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Abstract

The infinitesimal differential quantum Monte Carlo (QMC) technique is used to

estimate electrostatic polarizabilities of the H and He atoms up to the sixth order

in the electric field perturbation. All 542 different QMC estimators of the non-

zero atomic polarizabilities are derived and used in order to decrease the statistical

error and to obtain the maximum efficiency of the simulations. We are confident

that the estimates are "exact" (free of systematic error): the two atoms are node-

less systems, hence no fixed-node error is introduced. Furthermore, we develope

and use techniques which eliminate systematic error inherent when extrapolating

our results to zero time-step and large stack-size.

The QMC results are consistent with published accurate values obtained using

perturbation methods. The precision is found to be related to the number of

perturbations, varying from 2 to 4 significant digits.
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Chapter 1

Introduction

Non-linear optical properties describe the response of a system to an external

electro-magnetic field. These properties depend generally on the frequency of

the field, and they are called the dynamic electric polarizabilities (or non-linear

susceptibilities) of various degrees [1]. In the case of an electrostatic external

field, the polarizabilities are referred to as the electrostatic polarizabilities [2, 3].

Essentially, they are dynamic polarizabilities evaluated at the zero frequency.

Both static and dynamic polarizabilities are of a great importance not only

in non-linear optics [4-8], but also in the description of molecular interactions

[2,9-13] for simulations of gases and liquids and for understanding the chemical

structure of large molecules.

Although low-order polarizabilities (up to 4th degree) have been successfully

measured for several systems, the higher order ones remain a rather daring chal-

lenge for experimentalists [14-17]. On the other hand, there are many ab initio

theoretical approaches dealing with high order polarizabilities within the frame-

work of perturbation theories; see [18-30] (static) and [31-45] (dynamic). For

relatively small systems, this approach can be used to converge to results with

high precision. However, it becomes quite an impossible task for larger systems,

because of the necessity to reconstruct excited states of the system.

Quantum Monte Carlo (QMC) methods of solving the Schrodinger equation

for atoms and molecules have essentially the same level of complexity for systems

of any size [46-50]. They have been used to estimate molecular dipoles [51, 52, 53],
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Chapter 1. Introduction 2

dynamic polarizabilities [54], and other derivatives of the ground-state energy

with respect to perturbations [55, 56, 57].

The objective of this work is to develop the QMC technique to estimate all

atomic electrostatic polarizabilities up to the sixth degrees. We are interested in

the static properties, because it allows us to test the technique without compli-

cations with the frequency dependence. Moreover, it seems that the extension of

this work for the dynamic polarizabilities rests on a simple modification of the

obtained theoretical formulation in this work.

The key idea of our approach is that by using the QMC algorithm with-

out physical branching [58], we can estimate the polarizabilities directly at zero

perturbation. In other words, no finite perturbation approximation is applied.

To explore this technique, polarizabilities of H and He atoms are estimated. The

fixed-node QMC algorithm provides unbiased estimates of the exact ground-state

properties of these atoms, because they are node-less systems. This, and the fact

that very accurate results of perturbation methods for static polarizabilities up to

the sixth order of H and He have been published [26], makes them very suitable

benchmark cases.

The advantage of these systems in particular is that we can investigate the

statistical error of our results to gauge the feasibility of applying QMC to large

systems. Towards this end, it is very important to design the simulations effi-

ciently, so that the QMC estimates have the highest precision possible. In this

work, in a sense all information contained in the simulation is used and the

effectiveness of the method for various polarizabilities is compared.

The thesis is intended to provide all necessary background of the quantum

Monte Carlo simulations (Chapter 2), such as equivalency of the diffusion and

Schrodinger equation and procedures for simulating diffusion and for estimating

the ground-state energy.
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Selected topics from the theory of electrostatics, namely the concept of mul-

tipole moments, their traceless form, polarizabilities and atomic polarizabilities

and relations between them due to the spherical symmetry are discussed in Chap-

ter 3. Chapter 4 explains the so-called "infinitesimal differential diffusion Monte

Carlo" technique [55] for estimating the polarizabilities and contains the main

theoretical results of the thesis: formulas for QMC estimators for all non-zero

atomic electrostatic polarizabilities up to the sixth degree. Technical details con-

cerning the simulations are discussed in the Chapter 5, such as the basic struc-

ture of the programs, the trial functions used, and the procedure of extracting

the maximum possible amount of information about the polarizabilities from the

simulated data. Finally, Chapter 6 contains the simulation results, discussion,

and conclusions.





Chapter 2

Diffusion and Quantum Mechanics

2.1 Simple Diffusion

Diffusion of particles is a stochastic process driven by differences in their density.

In the case of isotropic diffusion in 3-dimensions with no external potential and a

constant number of particles we can write for the density of particles p{t, x, y, z)

the diffusion equation in the form

I = """'^ (2-1)

where D > is the diffusion constant. The solutions of this equation for any ini-

tial distribution p{to,x,y, z) correspond to random motion of the particles from

regions in space with larger density to regions with smaller density. Clearly, the

equilibrium or steady state would be achieved after infinite time, when the parti-

cles would be spread all over the space. However, since all space is truly infinite,

this ideal situation can not be reached, because the norm of the distribution

which corresponds to the number of particles is constant. ^

It is easy to generalize the described 3-dimensional diffusion to diffusion in a

space with a general dimension N. The generalized diffusion equation remains

in the form (2.1). The only change is that instead of a 3-dimensional spatial

coordinate we have now a iV-dimensional vector R = [xi,...,x,v] and V =

[gj-, . .
. , gf-].

From this point on we will assume that the dimension of space is

general.

^Equation (2.1) is nothing else than the equation of continuity for p with the flux of particles

J = —DVp and no sources.
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Chapter 2. Diffusion and Quantum Mechanics 5-

There are several ways to numerically solve equation (2.1) for a given initial

state po [59]- The Monte Carlo method uses explicitly the diffusion process de-

scribed by the equation to simulate estimates of the distribution p at any t > to.

Before we describe the method, it is essential to understand the basics of Green's

functions formalism.

The diffusion equation in its integral form

p{t, R) = y" G(R, t, R', fo)Po(R') d^R' (2.2)

defines a symmetric function 0(11,1,11', to), the so-called "Green's function" of

the equation. Important properties of Green's functions are

1. G(R , t, R, to) = G(R, t, R , to)

2. G{K,to,'R',to) = S^iK-R')

Once we know the form of Green's function of a equation, we can calculate the

solution p(i,R) through the relation (2.2).

The Green's function of the diffusion equation (2.1) is known analytically and

is equal to

G(R,^R,M=
(,^^(^^^^^)3^,,

exp
(R - R')M2

, ^ > ^0 (2.3)
W{t-to)

It is easy to verify that the solution (2.2) with this Green's function plugged-in

satisfies the original equation (2.1).

The fact that the Green's function (2.3) is simply a multidimensional Gaussian

spreading in time allows us to simulate the diffusion process by the following

procedure:

1. Choose a finite number of particles

2. Distribute them according to the initial distribution po
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3. To obtain an estimate of p at any time t > to, move each particle according

to

R^R+^/2D{t-to) v (2.4)

where f] is A/'-dimensional vector of random standard-normal deviates (for

each particle a new one)

2.2 DifFusion in an External Potential

To generalize from the simple diffusion described in the previous section, let us

consider an external potential generating an external force acting on the particles.

In this case we still have a constant population, but together with the random

diffusion motion there is a global systematic motion of the particles caused by

the external force. This systematic motion is called the drift of the particles.

The diffusion equation for the density of the particles is now (in N dimensions)

^ =: DV'p - V • (pF) (2.5)

where F(R) is the time-independent external A'-dimensional drift field. The norm

of p is conserved in time. ^ The steady state of the distribution is a solution of the

equation (2.5) with zero partial time derivative on the left hand side. Generally

an infinite time is required to reached this equilibrium.

Monte Carlo simulation of the diffusion process in the external potential is

based on modification of Green's function (2.3). This modification rests on the

idea that during a small time interval 5t (the so-called "time-step"), we can

£issume the drift field to be constant on the corresponding path of a particle.

Therefore we can view its motion as two independent motions: the diffusion and

the drift displacement, which under these assumptions is simply (5iF(R). Thus,

^Again, this equation is the equation of continuity for the flux J = —DVp + pF.
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the modified Green's function is a multidimensional Gaussian centered at the

shifted position R 4- 5iF(R) of the particle

(R-R'-(5fF(R'))^'
G(R,^,R-,M= (^^^^,)3N,,

exp
AD5t

(2.6)

This Green's function is surely not the exact one, it violates the condition

of symmetry mentioned earlier. It is just a (short-time) approximation to the

unknown exact Green's function of the equation (2.5), but it converges to the

exact Green's function as (5i -> [60].

Therefore Monte Carlo simulation of the diffusion in an external potential by

using this Green's function is only an approximation to the process defined by

(2.5). The simulation is strongly dependent on dividing any finite time difference

into n small time intervals and performing n successive short-time diffusions. The

last step (3. ) of the procedure from the previous section now changes to

3. To obtain an estimate of p at a time t > to, move each particle n — {t—tQ)/6t

times according to

R H-> R + StF{R) + s/2D5t f] (2.7)

where 5t is a small time-step chosen to meet some requirements of accuracy

Any information extracted from the simulated diffusion process is dependent

on the chosen time step St. The simulation described above should be repeated

for different reasonable time steps and a proper St ^>- extrapolation of the

information performed.

2.3 Diffusion in an External Potential with Sources

In the two previous sections we described diffusion processes, where the number

of particles was a time-independent constant. It is very natural to generalize the
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diffusion process further by assuming that new particles can be created or the

existing particles can be removed locally. This situation corresponds to some

source function S{R) defined in the space with the meaning of a density of new

particles created at position R during a unit time interval. If it is a hole, the

density of new particles would be negative. The equation of such diffusion is

|^
= DVV-V-(pF) + 5(^,R) (2.8)

The complex process described by this equation can be viewed as a combina-

tion of three separate processes: diffusion characterized by D, drift characterized

by F, and branching given by the source function S. It is important to note

that this separation is again an approximation which allows us to simulate the

diffusion, drift and the branching processes separately.

Before we show how to deal with the branching of the particles, we will first

constrain ourselves to a special case of the source function describing a first-order

rate process

S{t,-R) = k{R)p{t,R) (2.9)

The rate function A;(R) is a time-independent function of spatial coordinates. In

regions where A; > new particles are created at a rate k, and where k < 0, the

existing particles vanish at that rate.

The generalized diffusion equation (2.8) now has the following form

^ = DV'p-\/-{pF) + k{R)p (2.10)

If we look at the branching part of the equation (2.10) only, we will get the

familiar first order rate equation

^ = k{R)p (2.11)
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The solution of this partial differential equation with a initial condition po is

easily obtained

p(i,R) = Po(R)exp[A;(R)(i-to)] (2.12)

The simulation of branching is therefore based on replacing the initial number

of particles at some point by exp(fc(R)(t— to)) new particles. Because this number

is not generally an integer, the proper scheme is to replace the particle by the

integer part of (exp(/i;(R)(t - to)) + new particles, where ^ is an uniformly

distributed random number from to 1.

To summarize the whole procedure of simulating diffusion, drift and branch-

ing, the following step is added to the description from the previous sections

4. Replace each particle by mi[exp(A;(R)(i — to))+^] new particles at the same

position. If this number is zero, the particle is deleted. Random number ^

is uniformly generated from interval ... 1

Again, a proper extrapolation of any information obtained from simulations

with various time step values is necessary to obtain unbiased information about

the true diffusion-branching process. In this case it is even more critical than

without sources, because we are using the approximate Green's function (2.6)

as well as the assumption of the separability of diffusion, drift and branching

processes. The limit St ^^ is fully legitimate in the sense that in this limit the

combined diffusion and branching Green's functions approach the exact Green's

function of equation (2.10) [60].

2.4 Quantum Monte Carlo Evaluation of Expectation Values

In this section we connect quantum and statistical mechanics, which is the basic

idea behind quantum Monte Carlo simulations, see for example [46].
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Let us suppose we want to calculate the ground-state energy of an atom or

a molecule. Within the Bohr-Oppenheimer approximation, the Hamiltonian can

be written as (atomic units, rrie = e = h = 1)

H = -W^UVi^u---,^N) (2.13)

where N is the number of electrons. The first term is the total electronic kinetic

energy, and the second term is the potential energy consisting of three parts:

electron-electron repulsion, electron-nucleus attraction, and nucleus-nucleus re-

pulsion (for molecules).

Each electron has three spatial coordinates. Therefore each configuration of

N electrons is represented by 3N coordinates. By utilizing the notation from pre-

vious sections, we define a 3N-dimensional configuration vector R of the system

and the corresponding Laplacian V as

R = [ri,...,r^] (2.14)

V = [Vi,...,V;v] (2.15)

The Hamiltonian (2.13) has now the following compact form

H = -^V2 + F(R) (2.16)

Any possible state 0(R, t) of the system is a solution of the time-dependent

Schrodinger equation

z^^^ = (H-Er)0(R,i) (2.17)

where Et is an arbitrary energy shift. According to the theory of partial differ-

ential equations, this is a parabolic wave equation with an initial condition

0(R,io) = 0o(R) (2.18)
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Chapter 2. Diffusion and Quantum Mechanics Vi

Its solution can be written as (spectral theorem)

0(R,i) = ^Ci$i(R)exp(-i(f - to){Ei - Et)) (2.19)

where $i and Ei are the eigenstates and eigenvalues of the Hamiltonian

E^i{R) = Ei^i{K) (2.20)

The coefficients Cj are defined as

Q =
I

(^o(R)$:(R) d^^R (2.21)

The index i denotes the eigenstates and eigenvalues ^i,Ei in such order that $o

and Eq are the ground-state eigenfunction and the ground-state energy of the

system, respectively. Bound electronic eigenstates $i of the Hamiltonian (2.16)

can be assumed to be real functions.

Quantum Monte Carlo technique is based on the fact that the time-dependent

Schroginger equation (2.17) transformed to an imaginary time is equivalent to the

generalized diffusion equation (2.10). The proof of this theorem is as follows.

By defining the imaginary time ';

'

T = it (2.22)

we can write the Schrodinger equation (2.17) and its solution (2.19) in the fol-

lowing forms

_a0g^ ^ (_i^2 + ^.(R) _ Er)m:r) (2.23)

0(R,r) = EQ$.(R) exp (-(r - To){Ei - Et)) (2.24)
t

where we used the definition of the Hamiltonian (2.16).

Let a ^(R) to be a two-times differentiable real function which has everywhere

in SN-dimensional space the same sign as the time-independent ground-state $o
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and satisfies
^

<

/^(R)2d^^R<+oo (2.25)

Multiplying the equation (2.23) by —^ and using a formula

^V20 = V2(^(^) + <?iV2^-2V-(0V^) (2.26)

yields to the following equivalent equation

^ = I'^Hm - V • (<^V*) - (-^^ + V{R) - Er^ <l>^ (2.27)

By introducing a distribution function .,...,.

p(R,r) = 0(R,r)^(R) (2.28)

a drift vetor field

F = —

-

(2.29)
*

and the local energy function

E'- =— : (2.30)

we can rewrite (2.27) into the following form

^ = ^V^p - V • (Fp) - (£;'-(R) - Er) p (2.31)

This equation is equivalent to the time-dependent Schrodinger equation (2.17)

describing an atom or a molecule, and its form is identical to that of the gen-

eralized diffusion equation (2.10). Thus, it describes a diffusion of particles

with a density p (2.28), external drift F (2.29) and branching rate function

k = -(E'°'^ - Et)- The diffusion coefficient is D = ^, and the particles are

moving in 3A''-dimensional space.

^These conditions ensure that $ can be an approximation of the ground-state $o-
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Chapter 2. Diffusion and Quantum Mechanics 13

Now we will show that the diffusion process described by (2.31) converges

after a sufficently long time to its steady state. For large imaginary times only

the first term in (2.24) will dominate

4>{R,t) -^ Co$o(R) exp (-(r - ro)(Eo - Et)) , r -^ oo (2.32)

and the distribution function p will reach in this limit the so-called "mixed dis-

tribution"

p(R, r) ^ Co$o(R) exp (-(r - to){Eo - Et)) *(R) oc $o^ = p^(R) (2.33)

The existence of the steady state of the diffusion process allows us to estimate

the ground-state energy of an atom or a molecule. Even though we don't know

the exact ground-state solution $o, by simulating the diffusion and branching

process we will obtain, after a sufficiently large number of iterations of the proce-

dure described in the previous section (equilibration), an estimate of the mixed

distribution, which contains information about the unknown exact solution via

(2.33).

This information can be extracted by using the hermiticity of the Hamiltonian

and the following expression for the ground-state energy

^ (^o|H|^) ^ JW(f^) ^-^-^R ^ /p,„£"°-d3NR
°

($0|^) J^o^d^'m !Pmd''''R
^ '

After equilibration, the last integral in (2.34) can be approximated by averaging

the local energy over the ensemble of simulated particles. The time-step biased

quantum Monte Carlo estimator of the exact ground-state energy is given by

^o(5r);^— ^£'°=(R0 (2.35)

^^P i=l

where Np is the current number of particles and Rj is the position vector of the

i-th particle in the 3N-dimensional space.
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The quantum Monte Carlo simulation as described can be performed only for

finite values of time-steps 6t. As it was discussed in the previous sections, the

simulation resembles the true diffusion process only in the limit 6t -> 0. Thus,

it is neccessary to extrapolate several ground-state energy estimates obtained by

(2.35) for different time-steps of the diffusion simulation to get an estimate of the

exact ground-state energy of the system, given by the St = intercept.

The value of the energy shift Et does not affect estimated values of the ground-

state energy. It only controls the total growth (or decay) of the population of

particles. The best control is achieved by choosing Et to be close to the unknown

jE'o, which is the reason why Et is called the trial energy. By monitoring the

particle populations in successive runs we can estimate the ground-state energy

as well (see, for example, Section 3.2.3 in [46]).

In quantum Monte Carlo simulations the function ^ is taken as a reasonably

good approximation of the exact ground-state $o, and it is referred to as the trial

function. It is usually a result of sophisticated optimization procedures, and its

quality has a direct bearing on the standard deviation of the ground-state energy

estimators.

The condition implied that the trial function has the same sign as the un-

known exact solution $o obviously can not be satisfied for systems with nodes,

because we generally don't know the exact solution. Thus, for a given approxi-

mate ^, the described algorithm converges to a mixed distribution (2.33), which

is not neccessarily positive everywhere in the configurational space, and the inter-

pretation of the diffusion process is problematic. However, it was shown that the

algorithm under these circumstances gives variational (upper-bound) estimates

of the exact ground-state energy [61]. The difference of the fixed-node energy

and the true Eq is called the fixed-node error.

Equation (2.35) is a time-step biased estimator of the exact energy given
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the mixed distribution of the particles, but there is no estimator of the exact

expectation value of properties represented by operators which do not commute

with the Hamiltonian. An example is the operator of the position of an electron

Fj. One could use an approximate formula [62]

but this requires two separate simulations: one with branching (to obtain the

mean over the mixed distribution) and another without branching at all (to obtain

the variational distribution). This point will be discussed in the next section.

2.5 Algorithm with Constant Population

The algorithm with physical branching does not provide estimators of exact

ground-state expectation values of operators which do not commute with the

Hamiltonian. Also, the procedure of creating and deleting the particles due to

the branching term can be expensive and time-consuming. Therefore, other QMC

algorithms were developed which do not change the population of the particles

[63, 58, 64].

By excluding the branching term from the equation (2.31) we get the following

diffusion equation

^ = ^V'^p - V (Fp) (2.37)

which has the same form as (2.5) and describes the diffusion and drift of a constant

number of particles.

The steady long-time limit solution of this equation is the variational distri-

bution

p(R, r) -> ^2(R) = p„(R), r ^ oo (2.38)
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Chapter 2. Diffusion and Quantum Meclianics 16

This is can be verified by evaluating the right-hand side of (2.37) for p = p^

^ = iv^(^^) - V • (^^^) = (2.39)

which shows us that once reached, the variational distribution will no longer

change in time.

The quantum Monte Carlo algorithm with constant population (or without

branching) is based on simulating the diffusion process described by (2.37) (Sec-

tion 2.2) and replacing the branching of particles by their relative weights. The

weight for an individual particle reflects the effective importance of that particle.

It estimates the number of particles we would have instead of that one particle,

if we used the algorithm with branching.

Defining the branching factor of the i-th particle at j-th iteration

k,,=exp[-6T{E""={R,,,)-ET))
.„^^ ^, (2.40)

where St is the time-step of the simulation and Rjj is the configuration of the

particle, we can write for its past weight

^15= n kk (2.41)

k=j-L+l

Given by accummulating the L last branching factors of a particle, the past

weight is a tool for replacing the actual branching process. The "length of mem-

ory" L may not be arbitrarily large, as that would yield to an excessively large

variance of the weights and estimates [65, 66].

The time-step biased ground-state energy estimator differs from (2.35) by

weighting the average over the particles

E E E'-(R,,,>ip;

EoiSr) ^ '=^^=;
^ .

(2.42)

^ ^ (p)
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where Np is the fixed number of particles and Ni is the number of successive

iterations.

Because the particles are after equilibration of the ensemble distributed ac-

cording to the variational distribution (2.38), from the following equation

^ ^ (<l>o|H|^) ^ I^' (f ) (^) d^'K ^ Jp^E^- (^) d^'R

compared to (2.42), we can conclude that the past weight of a particle at Rjj

position in the configurational space is an estimate of the ratio of $o and ^

evaluated at that position, multiplied by a constant

(p) _ ^o(Rij)
^S oc Z';t.s (2-44)

The distribution of weights can be used to sample the exact distribution <I>q

and to estimate expectation values of non-differential operators, shown as follows.

The exact expectation value of a non-differential operator A in the ground-

state can be written as

{A). ^ ($o|A|$o) = '-^ = \l\y (2.45)

Assuming that we can simulate the variational distribution appearing in the

last expression, we would be able to estimate the expectation value if we were

able to estimate square of the ratio ^. The obvious solution to use the square

of the past weights is incorrect, because generally a squared estimator is not an

estimator of a square [67, 68].

We need one more estimator of the ratio at the same position Rij, and then

by multiplying this new weight by the past weight (2.44) we would obtain the

estimator of the squared ratio.

This can be done by using a so-called "future walking algorithm" [58], in

which the last L iterations on a particle are viewed as the future positions of
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'present"

the last
calculated

Ri,j-L*l .E (Ri,j-L*l) .bi,j-L,l

Ri,j-2 .E (Ri.j-2) .bi.j-2

Ri,j-i 'E (Ri,j-i) .bi,j-i

Ri,i ,E'°=(Ri,j) ,A{Ri,j),bij

Ri,j*i .E (Ri,j»i) ,bi,jti

Ri.j*2 .E ° (Ri,j.2) .bi,jt2

Ri,j«-L-1 .E (Ri,j*L-l) .bi,j*L-l

w (p.f)
i. J

Figure 2.1: An illustrative picture of a QMC simulation with constant population

the particle located at a position in the present (Figure 2.1). As the diffusion

simulation can be reversed in time"*, the future weights, given by the product of

L "future" branching factors, •,: !

W.^ = n *.. (2.46)

have to be also an estimator of the ratio equivalent to (2.44)

wlj (X
^(R.,.)

(2.47)

By defining the past-future weight as a product of the past and the future

weights

».,(p./) _ ,,,,(P),,.(/)
(2.48)

"In the limit St -¥
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we obtain a weight which is distributed as ' - ;

Now we can write energy estimator (2.42) using the future weights

^o(<^^) ^ ^^''^N„ N-
(2.50)

i=lj=l

or an energy estimator which combines both past and future weights (effectively

using the average of them)

EE^"'^(R^j)(^'g + ^l?)
Eo{Sr) « ^^^^n^, (2.51)

1=1 j=i

A very important difference between this algorithm and one with branching is

that by using the future walking concept we can estimate the exact expectation

value (2.45) of a non-differential operator A by taking the past-future-weighed

average over the ensemble

E E A{IUj)w^/^

(^)^ - '"'t .,
, ,

(2-52)

We introduced the new parameter L, giving the number of branching factors

entering past or future weights. Of course, theoretically, this number should be

infinite. As it was said, large values of L yield to unstable behavior: one particle

would end up with a tremendous weight after some number of iterations and all

the other particles would have weights relatively close to zero. That is the reason

why we keep L finite and constant during the simulation for a given time-step

St.
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However, in order to obtain an unbiased limit of expectation values, it was

shown that we have to increase L as a smaller time-step is chosen. The proper

time-step dependence of L is given by this relation [58]

i = ^o{^)"«^ (2.53)

where Stq is the maximum time-step used, and Lq is the chosen value of L for

the maximum time-step simulation.

The initial value Lq can not be reasonably chosen before the complete sim-

ulation. Therefore we must use several {N^) initial values of L. It is possible

to calculate all Nl estimates at any time-step for all quantities in one quantum

Monte Carlo run and to deal with the finite L-bias after the 6r -> extrapolation

procedure.

Also, the proper ensemble size time-step dependence has to be satisfied. The

smaller the time-step, the larger number of particles Np, and the number of

iterations Ni has to be chosen according to

Np a ^ (2.54)
OT

I\ oc j- (2.55)
OT

The trial energy Et now does not affect the simulation at all. Its only function

is to control the magnitude of the exponent in the branching factors (2.40). In

order to obtain the exponent evenly distributed around zero, Et must be an

estimate of the variational energy of the trial function ^.

For the sake of clarity, an outline of a quantum Monte Carlo simulation with-

out branching follows:

Suppose we want to estimate the ground-state energy and an expectation

value of a non-differential operator A of a system with Hamiltonian H. We have

a given trial function ^ (a result of an optimization procedure), therefore we can
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calculate the drift vector (2.29) and the local energy (2.30) for any configuration

R of the system. Also, a value of the variational energy Et is provided.

1. The first step of the simulation is the initialization of all parameters. We

have to choose several (Nt) time-steps we want to use. A safe choice is 5-7

evenly distributed values of time-steps, with a reasonable maximum time-

step Stq [69]. Our simulation will perform separate diffusion simulations for

each of these time-steps, in the order from the maximum to the minimum

time-step. We also have to choose initial values of the number of particles

iVpo, the number of iterations A^io, and a set of A''^, values of the L's.

2. For a given time-step (according to the mentioned descending order), up-

date values of the number of particles Np, the number of iterations N„ and

all Nl values of L according to the relations (2.53-2.55). Of course, in the

case of the maximum time-step, all initial values are unchanged. Initialize

the positions of all particles, for example by placing them randomly in a

3iV-dimensional unit cube around a meaningful location (usually the origin

of the 3/V dimensional coordinate system).

3. Perform a sufficient number of times more than the current iV, iterations

the moving procedure described in Section 2.2. This will ensure that the

ensemble has reached the long-time asymptotical solution, the variational

distribution. This process is called the equilibration of the ensemble. There

is no need to evaluate the local energy or the property ^4 for the configura-

tions during this phase.

4. Perform another 2Lmax — 1 iterations, where Lmax is the maximum value

among the chosen (and updated) L's. This time for each iteration calculate

the local energy £''°'^(Rij) and the property A{Rij) for each particle. Place



,.;t £



Chapter 2. DifFusion and Quantum Mechanics 22

all Np{2Lmax - 1) local energies and the same number of properties A in

memory. This phase can be referred to as filling the memory (stacks).

5. From now on, for each new iteration we will update the memory, such that

only the last 2Lmai — 1 values of local energies and properties A for each

particle will be stored. That means for each iteration we can extract from

the memory values of all N[^ past, future and past-future weights as well

as the "present" values of the local energy and the property A for each

particle (Figure 2.1) By doing this, we perform A', iterations, updating

the Nl values for the sum of the past, future, past-future weights and the

sums corresponding to the numerator of estimators (2.42), (2.50), (2.51)

and (2.52).

6. After all Ni iterations are finished, use those sums and the estimators to

calculate all Ni values of the ground-state energy and of the ground-state

expectation value of A. Therefore, each time-step will result in A''^, values

for each estimated quantity.

7. Repeat steps 2-6 until all time-steps are used. We will end up with Nl x A^^

values, for the ground-state energy and for the non-differential property A.

The last phase of the simulation is to perform a reasonable (5r —> ex-

trapolation of those values for each initial L separately. This will result

in Nl 6t = intercepts of the ground-state energy and the property A.

To obtain the final exact ground-state estimate of each quantity, choose it

to be the estimate for the smallest L for which the value of the quantity

does not have any visible finite-L-bias. An idealized situation is depicted in

Figure 2.2, which could be a result of a quantum Monte Carlo simulations

with Nl = 8. The final estimate of the expectation value of A is the fourth

initial L, because this result is within a one-sigma range of all results for
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Chapter 3

System of Charges in an External Electrostatic Field

3.1 Mutlipole Expansion of Classical Energy

Atoms, molecules or any systems of charged particles interact with an externally

imposed electric field. This interaction causes the system to change its properties.

One of the most important is the cleissical energy of the system E given by

E = Eo + Y,Q^H^^) (3-1)

i

where Eq is the energy of the system without the field imposed, index i labels

charges Qi placed at positions Fj, and 0(r) is the potential of the external electro-

static field. The theory of electrostatics defines the vector electric field generated

by its potential </> by the following relation

E(r) = -V</>(r) (3.2)

We are interested in local characteristics of the external field in the vicinity of

the system of charged particles. It is natural to expand the presumably smooth

function of coordinates 0(r) into its Taylor series around the coordinate origin,

where the system can be placed without any loss of generality

(3.3)

Greek suffixes run through the Cartesian indices x,y,z, and summation over a

repeated suffix is implied. After inserting this expansion into (3.1), the energy of

24
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the system can be written as

E = Eo+ <t>{0) Y^Qi-EaY^ qiTia " ^£^a/3 X] Qi'^ic^'^iP " IT^^aPy J^ Qi'^ic^'^iP'^h " • • •

i i I i

(3.4)

where r^a stands for the a component of the position vector tj, and a set of new

symbols for the electric field components and their derivatives calculated at the

origin O has been introduced. Following the definition (3.2) ,
r

Ea = -^-4>{0) (3.5)

EaP=^-^ = -^r^ci>{0) (3.6)
dr0 avadrp

E.0, = -^ = -
^ ^ ^ 4>{0) (3.7)

the components of the electric field, the electric field gradient and the electric

field hyper-gradient are defined, respectively. Note that the components of the

field gradient, hyper-gradient and every other possible higher order derivative of

E are invariant under interchange of any two suffixes, and therefore they form

symmetric tensors.

The expansion (3.4) is called the multipole expansion of classical energy of

the system, and its coefficients define components of multipole moments tensors

in their so-called traced Cartesian form [71]. The first of them is the total charge

of the system

^/ = E<?' (3-8)

i

which is equal to zero for neutral systems such as neutral atoms and molecules

in their ground state. Even for non-neutral systems {q ^ 0) the term in the

multipole expansion (3.4) containing the total charge is redundant. The reason is

the gauge invariance of the electrostatic potential 0, which gives us the possibility

to adjust it in such a way that 0(0) = 0. Therefore, we will not write this term

in the next formulas.
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The next terms of (3.4) are more interesting. They define components of the

dipole moment vector of the system

Ma = Y^qiria (3.9)

i

the quadrupole moment tensor

Qa(3 = J2qiriar0 (3.10)

i

and components of the octupole moment tensor • f' • :

-Rq/37 - ^91^0^/3^7 (31 1)

i

in the traced Cartesian form. Multipole tensors of higher ranks can be similarly

defined, and all of them are symmetric with respect to interchange of any two

suffixes. Now, the multipole expansion of the energy has the following compact

form

E = Eq — HaEa — —^Qal3EaP — 7r^Ra0iEa0^ — . . . (3.12)

Although the above approach sufficiently describes energy dependence of any

system of charged particles in an external electric field, a different, but equivalent

definition of the multipole moments is often used.

3.2 Traceless Form of Multipole Moments

There is a similarity between the gauge invariance of the electrostatic potential

and the possibility to define multipole moments in different ways. For example,

by adding a constant to a given electrostatic potential we will not change

Maxwell's equations.^ In other words, for the same problem there are many

equivalent possible choices of actual description of the physics of the problem, in

this case it is the function 0.

'This is just a special case of gauge transformation.
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A very similar situation is with the definition of the multipole moments. We

have many ways of expressing the multipole moments in the energy expansion

(3.12) without changing the physics of the interaction. In this case this means

without changing the overall summation on the right hand side of (3.12), which

corresponds to the energy of the system.

Fortunately, there is a condition which mutlipole moments must satisfy only

in their unique form. The condition is based on the following fact: exposed to

an external electrostatic field, a system of charged particles does not encounter

any space filled with charges causing this external field. In other words, at the

position of the system Laplace's theorem is satisfied

V.(V0) = (3.13)

In the terms of the components of the electrostatic field E this property of the

external potential (j) means that for every electric field tensor Eap- Eaff-y, con-

traction of any pair of indices gives zero

Eaa = (3.14)

and so forth for high-rank tensors.

These equations are the reasons why we can add to any multipole moment

tensor with rank larger than one any multiple of the unit Kronecker 5 tensor.

The Kronecker deltas simply contract the corresponding indices of the electric

field tensor, and therefore they do not contribute to the total energy expansion.

This kind of transformation of the multipole tensors is the one which is used to

construct the unique traceless form of multipole moments.

The traceless form requires multipole moments to have contraction of any pair

of indices equal to zero. Because this can not be satisfied for the dipole moment
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as a tensor of rank one, its definition remains the same as in the traced Cartesian

form (3.9). The quadrupole moment in the traceless form is designated 9q;3, and

the octupole moment Qais-y- Their components are given by

^'^/J = 2 ^ <7.(3riari;3 - rjdap) (3.16)

^c.P', = 2 S 9t {^riariffTi^ - r}{riJp^ + Ti^S^^ + Ti^^ap)) (3.17)

or, in general case

AV..= i^£„rr'
,,,^,^„,,J^)

(3.18)

where m is the rank of the multipole tensor Mai5...y. [72]. It is easy to see that the

condition of contraction to be zero is satisfied; for example,

Qaa = \Y. 9^ {^rf - rfS^^) = (3.19)

Properties of multipole moments and field tensors can be summarized as fol-

lows:

1. Qq/3, ^aisj, Ea0i Ea0y, ... are symmetric in all their indices

2. V • (V(?i) = 0=^ E^c, = 0: Eca... =

"• ^aa — ^1 ^'aa7 — U, . . .

It is important to note that the traceless form of quadrupole and octupole

moments differs from their traced Cartesian forms not only by the added S ten-

sors, but also by multiplicative constants. Therefore, the multipole expansion in

terms of the traceless multipole moments slightly differs from its traced Cartesian

counterpart (3.12), and it is given by [26]

E = Eq — l-LaEa — -Qa^EaD — —^aPyEaDy — . . . (3.20)

There is another important form of the multipole moments called the spherical

form [73, 74]. It is obtained by expanding the electrostatic potential into spherical

harmonics. We will not use the sperical form in this work.
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3.3 Perturbed Hamiltonian and Polarizabilities

Static polarizabilities of a system describe its response to an external electro-

static perturbation. Microscopic systems such as atoms and molecules have to

be treated in the framework of quantum mechanics. The first step towards a

quantum mechanical picture is constructing the energy operator. This is done by

replacing the classical Hamiltonian by its operator version.

Following the previous section and its main result (3.20), the Hamiltonian

operator for an atom or a molecule in an external electrostatic field can be written

in the form of the multipole expansion (extended up to the sixth order following

(3.18))

H = Ho - /.laEa — -QalsEaP - TZ^adyEall-y
6 15

— rzrz^aff'isEaiS'rS — ZrrzMap-ySeEag-ySe
lUo 940

-
^Q^g^

J^^al3y5e(;Ea0-ySe(: - (3-21)

where /iQ, ©Q^g, ^ap-y, ^aiSyS, ^^ap-ySe, Ma0-/5e:(; are Operators of the dipole, quadru-

pole, octupole, hexadecapole, dotriacontapole and tetrahexadecapole moment,

respectively.

To obtain the perturbed ground-state energy E of the system one has to solve

the time-independent Schrodinger equation

H$ = E<^ (3.22)

to find the perturbed ground-state wavefunction $.

Because the Hamiltonian (3.21) is a function of field tensors components

Ea, Ea(), Ea3-f, • • •, its eigcnstatc <I> and eigenvalue E also have to be functions of

the field tensors components. We can expand both functions $(£'q, Eap, Eap-,, •)

and E{Ea, Eap, £'0/37. • • •) into their multivariate Taylor expansion and build the
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perturbation theory, but we are interested only in the expansion of the ground-

state energy of the system, because that is the one which defines polarizabilities

of the system.

The perturbed ground-state energy of a general system with no symmetry

can be Taylor-expanded in the electric field tensors components, where the com-

ponents of polarizability tensors are the Taylor coefficients. There are different

notations for this in the literature.

In the notation introduced by Buckingham [14, 2, 10]

E{Ea, Eap, Ea0-y, . . .) = Eq - l-Sj E^ - -0^^£'q/3 - —Q^^^Eq^t

--^OtapEcEn - —PaP-rEaEpEy - —^aP~tsEaEpE^Es

-—^SaP-ySeEaEpE^EsEe - —eap-ySeQEaEpE^EsEeEc^

— ;^^a,p-yEaEpj — -BaP^-ysEaEpEjS — -^Cap^isEapEyS

— r^Ea,Pj5EaEpy5 - -r—Dap,-y5,£(:EapEjsEe(^
io o!o '

Pa,P,-)6,e(:EaEpE.ysE^C " -77::^a,P,-f,5,e(;EaEpE-iEsEsQ

— ZfrzRaP-y,5e<;EQp-,Ese(: — —Sa,P'y,5s<^EaEp^EseC

--;rrr::Qa,p,T,S£(:EaEoE^Ese(; - ——Ua,p,yS6cEaEpE^se(: - (3.23)
, olio ^lU

where Eq is the unperturbed ground-state energy, and iJ.^^\ Q^^'^, 9.^'^^ are the com-

ponents oi permanent dipole, quadrupole and octupole of the system, respectively.

Symbols aap, Papy, -'^a,p-y, Bap,f5. denote components of various polarizability

tensors (dipole polarizability, dipole hyper-polarizability, dipole-quadrupole po-

larizability, dipole-dipole-quadrupole hyper-polarizability, etc).

A more recent and systematic notation was suggested by Bishop and Pipin in

terms of A' symbols [26]

E{Ea, Eap, Eap^y, . . .) = Eq — A^E^ — —X^pEaEp - -X^pEaP
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-^^a,0,yEaEpEy - -X^0,jEapEy - —X^/j^Eap-y

'x^aPi,SeEaPyEse - -—X^^^g^^EaPjsEs
15x3 "''^'''""^'"' 105

-g^^^apySeEaPfSe " '^X^j^.^g^^^EaEpEyEsEeE^

--^^^lp,-,,5,exEc,pEyEsEeE(; - ^^^X^i^.^s.^^EapEysEeE^

^ V'2 17 r 17
-^ v3

'^^aP,-yi,e^EapEy5Eei: - -^^X^^^s^^EaPyEsEgEQ

^aPi5,E,QEapi5EeEc^
- X^j^^g^^^E^DysE^c.

2!105 ^^^"'^'^ "^'" ' "- 105x3

--^^aPi5e,cEaPy5eEQ - -^^^^apySecEaPiSeC. - • • (3-24)

where we explicitly write all polarizability tensors up to the sixth degree.^ All A'

symbols are referred to simply as "polarizabilities" (no hyper-polarizabilities) of

a certain degree.

From both expansions (3.23) and (3.24) it is clear that the polarizability

tensors satisfy several trivial symmetries related to the fact that each electric

field tensor of a rank larger that 2 is totally symmetric in its indices, and that

a product of electric field tensors with the same rank is symmetric. Here is an

example of these symmetries for A'^^ .^^ ^ <- tensor (P in Buckingham's notation)

-^a/3,7(5,e,C ~ ^aP,-,5,C,€ — '^7<5,"/3,£,C
~ ^0n,-iS,£,C — ^ap,6-,,e,C (3.2o)

Every polarizability tensor has an unique set of these trivial symmetries, which

in fact defines its position in the expansion (3.24).

•^In the sense of Taylor series of electrostatic potential
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Polarizability tensors of any system are required to be traceless in order to

be defined in an unique way. The situation is the same as in the case of the

traceless definition of multipole moments, because in the expansion (3.24) some

of polarizabilities are contracted with electric field tensors of higher rank than

two. Thus, we can require the trace of corresponding indices to be zero.

Continuing with the example, A'^^^^^j. ^ in addition to its trivial symmetries

(3.25) satisfies the following conditions

^aa,-,5,e,i = 0' ^a0,j-r,eX
~ ^ (3.26)

but, of course, A'^^ ^^ ^ ^ ^ 0. Similar equations hold for all the polarizabilities.

The two conditions (3.25) and (3.26) affect the maximum number of constants

specifying the polarizability tensor of a system with no symmetry. For example,

the X^^p tensor is simply a symmetric matrix, which is generally specified by its

6 components. However, the maximum number of specifying constants for X^q

is one less, because its components are subject to the equation A'°^ = 0.

The maximum numbers of specifying constants (m.n.c. ), the conversion be-

tween notations (3.23) and (3.24), and the SI equivalent for one atomic unit of

each polarizability up to the sixth degree are listed in Table 3.1. The units were

calculated using the most recent values of fundamental physical constants (Ap-

pendix A). From this point only the systematic and logical A'-symbol notation is

used in this work. As it will be shown in the next chapter, this notation is very

convenient for estimating the polarizabilities.

3.4 Atomic Polarizabilities

Spherical symmetry of atoms implies strong restrictions on atomic polarizability

tensors: the number of specifying constants is drastically decreased (Table 3.1).
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Polarizability
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Several polarizabilities are identically zero, and nonzero components satisfy spe-

cial conditions. The origin of these restrictions and the symmetry relations be-

tween nonzero components for each atomic polarizability up to the 6-th degree

are discussed as follows.

Spherical symmetry in the context of quantum mechanics means that the

Hamiltonian of the atom in an external electrostatic field (3.21) commutes with

every operator of rotation of axes in 3-dimensions. Therefore, the perturbed

ground-state energy (3.24) is the same in any two coordinate systems S, S' related

to each other by linear transformation

r'^ = Rc0ris (3.27)

such that RaD is a rotation matrix satisfying

RapR^0 = 6a-y (3.28)

det/? = +l (3.29)

From the definition of electric field tensors (3.5), (3.6) and (3.7), we can

straightforwardly write the transformation rule for their components from system

S to system S' as follows

Kp = TTTT^iO) = R^a,R03.E„.0, (3.31)

Ko-, = Q^., Q^, Q^i 'i^(<^) = Rac'Rgp'R-ryEa'^'Y (3.32)

or in general compact form

^'aP...
— Raa'R^ii' • • Ea'0'... (3.33)

In order to obtain the perturbed ground-state energy (3.24) in system 5'

we have to replace all electric field tensors by their transformed counterparts.
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Because the energy has to remain the same after the transformation every trans-

formed term in the expansion has to remain the same. By equating them to their

original value in system S we will get the following conditions for the atomic

polarizability tensors

A'c-Roq' = ^a' (3.34)

^^a,P^aa'R0P' = ^a',13' (3.35)

^apRaa'Rpi}' = ^q'/3' (3.36)

^q,/3,7-Rqq'-^/3/5'-^77' — ^a',/3',7' (3.37)

^CLp^-jRaa'Ruii'R^l' = ^a'0'n' (3.38)

^affi^aa'RpP'R^y = ^a'P'Y (3.39)

^a,P,-,,5Raa'R0(3'R-yy'R5S' = ^ a' ,0' ,-,' ,5' (3.40)

^Q0,-,,sRaa'Rl3l3'RyYR66' = ^a'0',y,i' (3-41)

^aP^-ysRaa'RuP' R-ii' Rs5' = ^a'0',-j'6' (3-42)

^ap-y^sRoa'RpP'R-y-y'RsS' = -^a';3'7',5' (3.43)

^aP-ysRaa'RpP'RyyRsS' = -^a'P'y'S' (3-44)

^Q,P,-f,S,£Raa'R0l}'R'r-y'RiS'Re£' = '^ a' ,0' ,Y ,5' ,e'
(3.45)

^al3a,i<eRaa'R&0'Ri-i'R5&'Re€' = ^ a' 0' ,-,• ,5' ,e'
(3.46)

^a0,',S,eRaa' R00'R-yY Rs5' Res' = ^ a' 0' ,1' 5' ,e'
(3-4

^a0'y,6,eRaoL'R00'Rii'R66'Re€' = -^a'/3'7',i',e' (3.48)

^Q0-y,SeRaQ'R00'R-n'RsS'Re£' = -^q'/3'7',(5'£' (3.49)

^a0i5,sRQQ'R00'Rri'Rs5'Ree' =
-^a'/3'7'(5',£'

(3.50)

^aP-ySeRca'RpP'Rii'Ri&'Res' = -^a'^'7'(5'£' (3.51)

^a,0,-,,i,e,^Raa'R00'Ri-t'R55'R£e'R(:(.' = ^^ q' ,/3' ,7' ,5' ,j' ,C'
(3.52)

^a0,y,5,e,^Raa'R00'R-iYR6S'Re€'R<:(;' =
-^a'/3',7',<5',£',C'

(3.53)
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^a0,-f5,e,Q^aa'R0l3'R^y'R65'Res'R(:C = ^a'P' ,-y' S' ,e' ,C (3.54)

^aP.fS.e^Raa'RpP'RjyRsS'Ree'R^C =
^a'P' ,YS',e'(:' (3.55)

^Q0t,S,e,(^Raa>Rl3O'R-y'^>R6S'Ree'Rc.C' = ^a' 0'Y ,S' ,e' ,<:' (3.56)

^Q/37,(5£,C-^a"'-^^/9'-^7'-R<55'-R££'-RcC'
~

^a'P''r',S'e',C (3.57)

^a0-^,SecRaa'Rp0'RTi'R66'Re£'Rc(,' =
^'q'/3'7',(5'£'C

(3.58)

^a0-yS,eX^aQ'R00'R-fYR55'Rse'RiC — ^a' 0' -y' 5' ,e' ,C
(3.59)

^a0-y5,s^Raa'R00'R'yy'R55'R££'R(;C =
^^V/3'7'(i',£'(:' (3.60)

^a0i6e,^Raa'R00'R-)i'Rs5'Ree'R(,(i' — ^a' 0' t' 5' s' ,C
(3.61)

^apySecRaa'Rpp'R'tYRsS'Ree'R^C =
-^'a'/?'7'<5'£'C'

(3.62)

These conditions are restrictions on polarizability tensors implied by the

spherical symmetry of atoms, and they have to be satisfied for any rotation

matrix R. Tensors which satisfy the conditions are called "isotropic tensors"

.

It is important to note that the conditions of isotropy are the same for po-

larizabilities with the same number of suffixes, no matter what the configuration

of commas is. Therefore spherical symmetry does not distinguish between var-

ious polarizabilities of the same degree. As it was already said, it is the set of

trivial symmetries together with conditions of vanishing traces which makes a

polarizability tensor distinguishable from others.

The equation (3.34) means that the components A'° have to form a vector

which is invariant under any rotation. Clearly, the only solution of the equation

is the zero vector; therefore, the isotropic tensor of the first degree is identically

zero

A'° = (3.63)

and number of specifying constants is also zero as appears in Table 3.1. From

the same table we see that polarizability X° corresponds to the permanent dipole
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moment of the system, which for atoms is indeed zero.

We can proceed to the next equation (3.35) and look for a matrix A'^^ which

is invariant under any rotation. We would find that the solution is any multiple

of the unit matrix

XI0 = cSap (3.64)

Inserting this solution to the equation (3.35) will show us how this works. The

delta tensor contracts one rotation matrix with the other, which gives according

to (3.28) again a delta tensor. The multiplicative real constant c is the only

degree of freedom left, and it is the one specifying constant of the atomic X^p.

Solving the equation for X°p will help us to understand how the property of

vanishing trace affects the solution. Because the equations (3.35) and (3.36) as

it was noted are formally the same, we have again

A'°^ = cSa0 (3.65)

but requiring the traceless form of the polarizability tensor

X°, = c<5„, = 3c = (3.66)

yields to a subsequent conclusion that c = and :

XI0 = (3.67)

This polarizability tensor corresponds to the permanent quadrupole moment of

an atom, which is known to be zero because of the symmetry.

Up to this point, we were able to find isotropic forms of tensor of rank one and

two. To find the isotropic form of tensors of a higher rank is not a trivial exercise.

The solution is based on results of Weyl's theory of invariant polynomials. The

procedure how to generate an isotropic tensor in 3 dimensions of a general rank

(number of indices) can be summarized as follows
^

^http://www.hydra.org.au/rks/docs/thesis/node48.html
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• any even rank isotropic tensor must be expressed as a linear combination

of products of the unit tensor (Kronecker delta)

• odd rank tensors must be expressed as a linear combination of products

of the unit tensor and the Levi-Cevita (totally antisymmetric Cap-,, or the

determinant tensor).

In practice, this means that we have to find every possible combination of

indices of 6 and e. For example, an isotropic tensor of the third degree has to be

a multiple of the determinant tensor. We can write for X^^^

^l,Pn = cea/37 (3-68)

But because at the same time the tensor has to be symmetric in all its indices,

the only possibility for c is to be zero.

We can generalize this idea to any odd rank atomic polarizability tensor. Ac-

cording to Weyl's rules, each term of the linear combination of the products has

to contain at least one determinant tensor. The trivial symmetries of polarizabil-

ities tensors discussed in the previous section would result automatically to zero

coefficient of that term. We can conclude that any atomic polarizability of odd

rank is identically zero. Therefore, the number of specifying constants of those

atomic polarizabilities is also zero.

Every polarizability tensor with a non-zero components must have even rank.

We can write any fourth rank isotropic tensor Tap-^i in the form of linear combi-

nation

Ta0ii = Ci(5q/3(5^5 -t- C-zSa-t^ss + Cs^o^tJ/j^ (3.69)

and any sixth order isotropic tensor TaPfScc^ in the form
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+C4 (5a/3^Se ^7C + C5SqP5sq S^g + Cq5ps (5qj (5^^

+C7SpsSQi^5^e + CsSpsS-yaS^e + CgSasSp^Syg

+Cio6qs50s^1(: + CiiSyaSst^Sps + CnSya^Sc^^ii .
'

'

+Ci35^pSs^5as + Cu5yj35seSa<; + CisS^s^afiSt^f: (3.70)

where Cj are real numbers. We see that in general the fourth rank isotropic tensor

has 3 specifying constants and the sixth rank isotropic tensor is specified by 15

constants.

It is straightforward to verify that all atomic polarizabilities of the fourth

degree A'^^^^.^,,,^^^.^^, A'^^_.^i, A'^^^^,^^^^^ in the form (3.69) satisfy the condi-

tions of spherical symmetry (3.40-3.44), and all eleven atomic polarizabilities of

the sixth order Xa,/3,7,<J,£,C' • • • '^^a/Ji^ec in the form (3.70) satisfy (3.52-3.62).

By requiring all trivial symmetries and conditions of vanishing traces for each

fourth and sixth degree atomic polarizability we can obtain further relations

between the coefficients c,, which can only decrease the number of specifying

constants.

To illustrate this final step towards obtaining the form of atomic polarizabil-

ities, an example of A'^^^ ^ follows. This polarizability has to be invariant under

interchange of cv •<-> /? and 7 <-> 5 indices. The expression (3.69) is symmetric in

those indices only if 02 = 03. Now the condition of the trace A^^ .^^
= reads

Aqq,7,5 = Cl^aa^-tS + 2c25a-,Sa5 = (3ci -|- 2c2)S^s = (3-71)

and has to be satisfied for any 7, S. This gives

C2 = -^Ci (3.72)

Therefore, the components of the atomic polarizability are --""-

Aq^,7,5 = Ci UapS-yS " -{Sat^HS + SasSiJ-^)] (3.73)
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This satisfies all required conditions (trivial, trace, isotropy) and has only one

degree of freedom or specifying constant.

This rather tedious procedure can implemented in Maple [75] (Appendix B.l)

and it gives the following results for all even rank atomic polarizabilities up to

the sixth degree

Xlp = c,5c,p (3.74)

X°^ = (3.75)

Xl,P,-y,S ~ ^^ i^f^P^-yS + ^a~i^05 + ^aS^-y) [3.76)

^'0^,7,5 = Cl [SapS^S - li^ai^lSS + SasSpi)) (3.77)

^ipnS = "^1 [^apS-yS - li^ay^pS + SasSp-,)) (3.78)

Kp,,5 = (3.79)

A'°^„j = (3.80)

Xa,0,-t,S,e,C = ^1 i^lsS^E^ai: + 5-,shc,^ocE + ^cxS^-y0^C;e

+^Q<5<^/3£<57C + ^la^&C^^Pe + ^-ia^6E^0Q

+6j05s(;5ae + ^-yp^Ss^aC + 5^S^a0^Ce) (3.81)

^UaUA ^ ^1 (~3'^"/5 (<^<5f^7C + ^K^-r- + ^7<5<^ec)

+^',S^0e^aC + '57(5'5/3C^n£ + ^a5^-,0^Ce

+^Q(5<5/3C<^7E + 5Q(55/3f<^7C + ^-ia^iC.^lie

+5-^a55e5lJQ + S-iP^sc^ae + ^iS^ie^ad (3.82)

+6a0^SC^-ye) + (fci + §02) ((5^<!5QE5.y^ + (5/34(5aC^7e
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4-Ci {SasSyffSce + SpsS-ya^Ce) + C26ys5a05(;e (3-83)

+Sap5seS^(; + ^apSs^^^e + h&^ia^^e

+S0s6yaS(^s + ^7Q<5<5C^/3£ + ^-ya^Sshc:

^^a/37,<5e,C
= ^1 ('^"'5(^7/?^^- + 5a/J^i£<57C + <^a/3^5C'^7E

+(5/35(5^a(5c£ + <570<^'5C'^/Je + ^ia^SeSl3(:

+5yl35s(;5ae + ^7,a'^5e^QC + ^yS^alS^Qe

-| ((5765^£(5qC + '57i'^/3C^o^ + hsSae^-y(:

+6ps5a<^S^e + ^asSfJiS-^e + Ls^PeSyi,)) (3-86)

-^"a^7,<5jC
= ^^ i^aS^yp^Ce + SapSse^',(: + ^aP^SC^iE

+5-yi35s(:Sae + ^iH^ie^aC + ^li^aH^Qe

+6pi6a^6^e + ^ash<:^ie + ^aS^He^ld) ("^^^)

Y2 _ ' (3.88)
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^Vec = (3-89)

Kpys.,^ = (3.90)

KpySeC = (3.91)

Here Ci and C2 are different in every equation; they are meant to designate the

specifying constant for each atomic polarizability separately. Some of these equa-

tions can be found in [2, 10].

It is interesting that certain even rank atomic polarizabilities turned out to

be zero after all those conditions applied. Of course, this was rather expected in

the cases of all permanent multipoles (A'" ), but it is a non-trivial result for the

others, for example A'^^^^^.^.

Another interesting fact is that some atomic polarizability tensors have the

same component definition. This is the case for A'^g,^^ and A'^^^^; X'^ji-f^s,e,c^

And finally, atomic polarizability A'^^^^_^ <- is the only one up to the sixth

degree with more that one specifying constant (Table 3.1).

Based on results (3.74-3.91) it is now fairly simple to derive a relations be-

tween different components of each atomic polarizability. Suppose we want to

derive the delations for A'^^. First we expand the term in ground-state energy

(3.24) without inserting the isotropic form (3.74), simplifying it only by using

trivial symmetries

-IXl^E^E, = -^ {X^^El + Xl^El -f Xl,El (3.92)

+2XlyE,Ey + 2Xl,E,E, + 2Xl,EyE,) (3.93)

Then we compare it to the same term expanded by using the isotropic form (3.74)

-^Xl^E^E^ = -\^c,5^,,E^E, = -ici [El + Ej + E^) (3.94)
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This immediately suggests zero components {Xly, .

.

.) and that the relation be-

tween non-zero components is

Xl, = Xly = Xl (3.95)

By repeating this same procedure for all atomic polarizabilities up to the sixth

order we get the following relations

.-^1,1,1,1 = ^ly,y,y
= ^lz,z,z = ^^x,x,y,y = ^^y,y,z,z = ^^x,x,z,z (3-96)

V2 — r2 _ y2 _ _9\-2 _ _0Y2
^xx,x,x -~ ^yy,y,y ~ ^zz,z,z ^^^xx,y,y ^^^xx,z,z

- -9 V2 - 1 v2 - 1 y2 =1 v2 (3 97)— ^^^yy,z,z — 2 xy,x,y 2^^12,1,2 ^^^yz,y,z \ >

vi _ vi — yi — _9y1 — —9Y^
^11,11 — ^yy,yy ~ ^zz,zz — ^^^xx,yy ^^^x.

Iy^ =^X' =-
o^*-iy,x!/ 2^xz,xz

2
-2^yy,ZZ - T^Xly.^y - -A'j^ jj - o^^J/2,y2

(3.98)

-^1,1,1,1,1,1 - ^^x,x,y,y,y,y " ^^^l,x,y,y,z,z — (3.99)

o
yi — _0\^ — 19 V'' = - Y^
^*-ii,i,i,i,i ~ ^'^xx,y,y,y,y ^^"'^ii,x,i,y,y ^' ^ xy ,x ,y ,y ,y

= 8AVV.,,,.,.
= -6X^x,,,,,.,. = • • (3-100)

' v2 _ _9y2 --V2 = — A'2
^ii,ix,ii "" '^'^^xx,xx,yy o^^xy,xy,xx g ^'iy,j/2,i;

= Xxx^yy^ZZ = ~o"^Xy,Xy,22 = • • (3.11)1)

^ixx,i,x,x ~ ^^^xxy,y,y,y ~ r,^^xxy,x,x,y ^'^xxx,x,y,y

= -6X,%,,,,. = yA-,\.,,,, = . .

.

(3.102)

y2 __9Y2 -_9Y2 =-Y2
^ixi,xi,x ~ '^ixx.yj/.x ^'^ixx,xy,y 2" ^^V'^^^V

_ 3 ^2 _ _fiY2 — _y2— 2 ^^y'^V'^
~ "^ixy,2z,y g ^xyz,xy,z

= -^XJ^yy,^, = -2X^^j^
j/j, y

= . • • (3.103)
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12vi _ __yi _ —fiyi — —OY^
^xxx,xxx c -^xyZyXyz ^^xxy,yzz ^-^iii.iyy

2
= 7;Kxy,xxy = --- (3.104)

Of course, the relations for polarizabilities of the second and fourth degree are

the same as those published in [3].

The atomic polarizability A'^^ ^^ ^^ has two specifying constants, and its com-

ponents satisfy this system of equations

11,11,1,1 ^1 '" ^2

Y3
^^xx,xx,y,y





Chapter 4

Quantum Monte Carlo Estimators of Atomic Polarizabilities

4.1 Analytic Derivatives of Ground-State Energy

As it was shown in the previous chapter, polarizabilities are essentially various

derivatives of the ground-state energy with respect to the electric tensors com-

ponents evaluated at zero electric field. Estimating of atomic polarizabilities is

therefore estimating of these derivatives.

One obvious method to do that would be to perform Q\IC simulation for

several choices of £'«, Eap, • and to get corresponding estimates of the ground-

state energy. By doing this we would sample the shape of ground-state energy as a

function of the electric field tensor components. Then we could estimate from this

shape the derivatives around E = point to obtain estimates of polarizabilities.

This method is called the method oi finite differences , because we are using many

small, but finite electric fields to explore the response of the system.

There are QMC methods which directly estimate derivatives of energy at the

point of zero perturbation [63, 55]. The infinitesimal differential diffusion QMC

[55] is based on analytical treatment of derivatives of the expectation value of

the ground-state energy. Using the algorithm without physical branching, we

can calculate the derivatives of the ground-state energy estimator directly and

then just run a single simulation which will estimate all neccessary derivatives

(polarizabilities).

In this method, the trial function ^ is kept fixed, and the described algorithm

is utilizing the fixed node approximation. As it was shown [51, 52, 53], under

45
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these conditions the Hellmann-Feynman theorem holds true and can be used for

overriding explicit evaluation of the first derivatives of the ground-state energy.

This will keep our formulas relatively simple.

For example, to obtain an estimator of A'^ ^ component we have to calculate

d^E{E,,E,0,...)

dEl

a2(H).

dEl
Ea=0,Ec,g-0,...

(4.1)

Ea=O,Ea0=O,-

where the Hamiltonian dependence on the electric field is given by (3.21).

Using the Hellmann-Feynman theorem we can write

^x,x - ~ ^\aEJ'

dE^

5(/ix),

dE^
Ea=0,Eo,i3=0,...

(4.2)

£:a=0,E„^=0,...

It is important to note that in the last equation the energy estimator (H)e = Eq

which uses the past weights (or future weights) (2.42, 2.50 or 2.51) was effectively

replaced by an estimator of a non-differential property (//x)e which uses the past-

future weights (2.52).

After inserting the expression for the estimator of the expectation value of fi^

(2.52)

^'^ dE^

ij

\ I.J /

(4.3)

Ea=O,Ea0=O,...

we see that the only quantity which depends on the electric field tensors is the

past-future weight wlj via the perturbed Hamiltonian (3.21). By using the

definitions of weights (2.41, 2.46, 2.48) we can write the past-future weight in the

following form

w(pJ)

-3 {©q;3}.j Ea0 - — {f^Q^7},,j ^aff-r ~ • " •
)

(4.4)
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where r is the simulation time-step {6t in Chapter 2), Eq" is the unperturbed

local energy

j,loc Ho*
(4.5)

and a new symbol {} is introduced for a cummulative value of a quantity

L-l

(°}i,j = E (a(Ri,j+it) + a(R^j-fc)) (4.6)

Jt=0

This symbol allows us to write the first derivative of the perturbed past-future

weight (4.4) in the following compact form

dEr
= rUt^}^.W^y> (4.7)

£a=0,£a/3=0,...

where W-j is the past-future weight for the unpertubed Hamiltonian defined as

F OF n
=exp[-r({£^-£;T}..'

Ea=0,Ea3-0,... I V * J 'J/

By using (4.7), the polarizability component (4.3) can be expressed as

yl _ t-'jI
^-^ ^Tr,'(pJ)

(4.8)

<PJ)
t,^.{r.,jWS''t,u^.}.jK
.'J ».j

(p./)

3

T((/ix{/ix})e - (/ix)e({/ii})e)

(4.9)

(4.10)

The formula (4.9) is the QMC estimator of A'^ ^ polarizability for a general

system. From now on, (4.10) will be used as a shortcut for (4.9) and it will also

be referred to as the estimator. In the next section we will show how this formula

simplifies further when the system has spherical symmetry.

By the same procedure we can obtain QMC estimator for any polarizability

component. For a higher degree polarizability the number of terms grows quite
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fast and it becomes complicated. Therefore, it was done by using Maple computer

algebra software (Appendx B.2).

One also has to keep track of all possible applications of the Hellmann-

Feynman theorem which give us different estimators for the same component.

For example there are two ways in the case of X"^

^\. apt.*. <*•>*• *-'

e

xx,x,x — " g^2
= -3

a2/OT.\

dExxdEx
Ea=O,Ea0=Q,...

(4.11)

Ea=O,Ec0=O,-

Therefore, we will end up with two different estimators. However, in some cases,

such as X^^yy, this gives estimators differing only by a permutation of indices

[x,y,z].

4.2 Simplified Estimators of Atomic Polarizabilities up to the Sixth

Degree

If the system is spherically symmetric (such as an atom), several terms in the

QMC estimators will vanish. For example, the second term in (4.10) vanishes

because (/Ji)e is the x-component of permanent dipole moment, which was shown

to be zero for atoms (Chapter 3). Similarly, all permanent multipoles will vanish

(A^a)e = (4.12)

(e„^), = (4.13)

(f^afl-y)e = 0,... (4.14)

If an expectation value of an operator is zero then the expectation value of a

cummulative value of that operator also has to be zero. We can write

({A^a})e = (4.15)

{{ea0})e = (4.16)

{{^a0y})e = 0,... (4.17)
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Straightforward generalization of this idea yields the following relations for

expectation values of various products of dipole and quadrupole moments and

their cummulative values. These are the only ones relevant to this work and are

used for simplification of QMC polarizability estimators up to the sixth degree.

They are ^

I

({Ma}')e = 0; A; = 1,3,5,... (4.18)

{^la{^l0}')e = 0; a 7^/?, A; = 0,1,2,3,... (4.19)

{{^ia}{^p}')e = 0; ay^P,k = 0,l,2,3,... (4.20)

(KlWKDe = (4.21)

(/Xa {/ia}' W}')e = 0; /c,/ = 1,3,5,... (4.22)

{^la.{^i0}{^iy})e = 0;a^p^j^a (4.23)

(ea;5{/i,})e = (4.24)

(/i,{e^,})e = (4.25)

By using the spherical symmetry relations (4.12-4.25) all QMC polarizability

estimators obtained by the procedure described in the previous section greatly

simplify.

Resulting formulas for all non-equivalent ^ components of all atomic polariz-

abilities up to the sixth order are

A'i,. = r(^.. Ui.})e (4.26)

At.,.,x = r^((/ix{Mx}')e-3({M.}')e(Mx{/Xx})e) (4.27)

Atx,.,. = r'{{^Af^.}M')e-{Uh}')e{^iA^.})e) (4-28)

'In these formulas we do not use the summation convention.

^The formulas are non-equivalent in the sense that none of them can be obtained from

another one by a permutation of [x, y, z].
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^xx,x,x = T'(Mx{/Xx}{e„})e (4.29)

= t2(0„{/.,}2), (4.30)

^L,y,y = T^Hy{fiy}{e.,}), (4.31)

= r^e,A^hV)e (4.32)

Al.,.,. = r2(A*x{^J{ex.})e (4.33)

= r^e,,{fi,}M)e (4.34)

^xx,xx = r(e..{e„})e (4.35)

^xx,.. = r(e,,{0..})e (4.36)

^x.,x. = r(e..{0x.})e (4.37)

^x,x,x.x.x.x = ^'(()^xK}')a + 30({/ix}')e'(/ixK})e
4,-t.S-

-5({Ai,}')e(Mx {/Xx})e - 10({Mx}')e(Aix K}')e) (4.38)

^x,x.z,.,.,. = r^(()^xK}K}')e-6({//j')e(/Xx{A^x}K}')e

+6({|iJ^)e^(/ix {/ixDe - ({/ij'')e(/^x {/^i})e) (4.39)

= r^iil-h UhV UhV)e - {UhY)e{l-h {l-hf)e

-3({/ix}^ UhV)e{l^z {f^z})e

+6({/.x}')e({/ij')e(M.{/'.})e) (4.40)

^^x,x,y,y,z,z = '^Hif^x {Mx} Uhf {^lzV)e ' {Uhjf)e{^x {/^x} {t^zV)e

-{{l^y}^ {^^zV)e{^ix{^x})e

+2({/i,}')e({Ai.}')e(Mx{A'x})e

-(K}')e(Mx{Mx}{/^.}')e) (4.41)

Alx,x,x,x,x = rn(exx{/ix}^-6({Mx}')e(exx{/ix}')e) (4.42)
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= T^((MxK}'{e,,})e-3(K}')e(/X,K}{0,,}>«

-3(Aix {Mx}).({Mx}' {exx})e) (4.43)

^xx.y,y.„,y = t\(/Z, {/i,}^ {0,,})^ - 3({Mj')e(M„ {A^J {Gxx})e

-3(A.,{M,})e(K}'{exx})e) (4.44)

= r''((exx{)U,}')e-6(K}')e(0xxK}')e) (4.45)

^xx,x,x,y,y = r^((Mx{/ix}K}M0xx})e-(Mx{Mx}>a(K}'{Gxx})e

-({/^y}'>e(MxK}{exx})e) (4.46)

= r\{Hy{^^}'^{^iy}{e^^})e-{liy{tly})e{{f^xV{Qxx})e

-({/ix}')e(//y{%}{exx})e) (4.47)

= r^((exx{/Xx}'{%}')e-({M')e(exxK}')e

-({p,}')e(0xxK}')e) (4.48)

^x\x,.,.,. = r^((Mx{Mj'{exJ)e-3(K}')e(/XxK}{0xJ)e) (4.49)

-2(/X, {Mz})e({/^x} {/ij {0xj)e

-({^j')e(Mz{A^x}{0xJ)e) (4.50)

= r''((0x. {^^x} {//J')e - 3({M.}')e(0x. {/^x} Uh})e) (4.51)

Al,,x,.,y,y = r^(/ix{%r{A^.}{0x.})e

-{M^)e{f^xM{Qxz})e) (4.52)

= 7-''((A^j/{Mx}{/^y}{/t.}{©ir})e

-(//„{A.,})e({A^x}{/iz}{exJ)e) (4.53)

= r''((0xz{/ix}{/iy}^{/^J)e

-({A^y}')e(ex.{/ix}{^.})e) (4.54)

^xx,y,y,z,z = r'{{^iy {fly} M' {e,x})e - {f^y {fiy})e{{^^zV {exx})e

-(K}')e(/iyK}{exx})e) (4.55)
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'\

-{M^)e{e..M')e) (4.56)

^xx.xx.x,x = r'iil,, Ut,} {e,x}')e - (Mx {Mx})e({exx}')e) (4.57)

= r3((exx Ul.V {0xx})a - ({/^x}')e(exx {exx})e) (4.58)

Alx.xx,,.y = r^((A^y{A'y}{exx}')e-(/i„{;^.})e({exx}')e) (4.59)

= r\{Q,, {^y}^ {OxxDe - ({/iy}')e(exx {OxxDe) (4.60)

^x.,y.,x,v = r^(/ix{A'y}{exJ{e,.})e (4.61)

= r^(exz{Aix}{My}{e,,})e (4.62)

^xz,zz.x,. = r^(0..{A^x}{A^.}{exJ)e (4.63)

= r^(//x{/i.}{e,J{0x.})e (4.64)

= r3(^.{Aix}{e.J{0x^})e (4.65)

= r^(ex.K}{A'J{e.z})e (4.66)

Al.,,,,x,. = r''(^x{A^z}{e,,}{0xJ)e (4.67)

= T^(ey,{Mx}{/i--}{exz})e (4.68)

= r'{Q,,{^^,}{n,}{Q,Jy}), (4.69)

At,,,,.,. = r^((A^z{/^z}{exx}{e,,})e

-(/i,{^,})e({0xx}{e,,}),) (4.70)

= r'((e,. {fi.f {e,,})e - ({/iz}')e(exx {G,,})e) (4.71)

A'x'x,,.,.,. = r'{{^iyUiy}{e,.}{eyy})e

-(/^y{A^J)e({exx}{e,,}),) (4.72)

= r^((exx {/^y}' {e,,})e - ({/^y}')e(exx {G,,})e) (4.73)

= r'UGyy {/i,}' {exx})e - ({My}')e(eyy {e,,})e) (4.74)

AxVxz.v,y = ^'((A^y{%}{exz}')e-(/iy{/X,})e({0xz}')e) (4-75)
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= r\{Q,,{^yf{e.,}),-{{ny}'%{e.AQx.})e) (4.76)

^x..x...,^ = r3((/^.{/^.}{e,J^)e-(/..{/xJ)e({e,,}^)e) (4.77)

= r3((e..M' {0.J)e - ({M.}')e(ex. {0x.})e) (4.78)

A'L..x.xx = r2(exx{exx}')e (4.79)

^kyy,yy = r'{e.A%yf)e (4.80)

= r2(e,,{e,,}{0,,})e (4.81)

Axz.x.,xx = r2(exx{exj')e (4.82)

= r2(0,,{0,,}{e,,})e (4.83)

^x,,..,x. = r2(ex.{0x,}{0,.})e (4.84)

^xx,.,,.. = r2(0,,{0,J{0,J), (4.85)

^xVx.,.. = r2(0z.{0x.}')e (4.86)

= r2(0xy{0zj{0xj)e (4.87)

A'ixx,x,x,x = ^^((Aix{/ix}M^xxx})e-2(/Xx{Aix})e({/^i}{f^xii})e

-({AXx}')e(Mx{^xxx})e) (4.88)

= r^((nxxxK}')e-3({/ix}')e(f2xxxW})e) (4.89)

^Ly,y,y,y = '^^ {{^^y M^ {^xxy})e ' 2{^y {l.ly})e{Uly} {flxxy})e

-{M')e{^h{^xxy})e) (4.90)

= r-^((Qxxy{/iy}'^)e-3({//y}^)e(nxxy{My})e) (4.91)

A'xxy,x,x,j/ = r^((/^x{/^x}{/iy}{nxxj,})e

-(A.xU})e(K}{flxx„})e) (4.92)

= '^^((^2/ {Mx}^ {f^iis,})e - ({Aix}^)e(/iy {f^xxy})e) (4.93)

= T\{Q,,y {/ix}' {/i,}). - ({//x}'>e(i^xx5, {My})e) (4-94)

^xxx.x,y,y = T^((Mx {^y}' {^xxx})e " ({A^.}')e(/ix {f^xxx})e) (4-95)



Il 1-
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-{^^yM)e{{^ix}{^xxx})e) (4.96)

= T^((f^xxx {^lx} M')e - {M%{^xxx {^x})e) (4.97)

A'xW,. = r^{^iy{^^,}'{Q,,y}),-{{^i,}\{^Ly{n,,y})e) (4.98)

= r^{{f^zMbh}{^xxy})e

-{^iA^^z})e{M{^xxy})c) (4.99)

= r'an^^y {//,} {/i,}')e - ({//J')e(fixxy {My})e) (4.100)

Ax\.,x,.,z = r3(/Xx{A^y}{/X.}{Qx,J)e (4.101)-xyz,x,y,z

,3
r'(f^xyz{A^x}K}{/^-'})e (4.102)

Alxx,xx,x = r2(Mx{G.x}{n...})e (4.103)

= T^Q.A^^x}{^xxx})e (4.104)

= r2(Q,,,{^,}{e„})e (4.105)

A'L.,,,,x = r2(^.,{0,J{Q,,,}), (4.106)

= r^eyy{^,}{Q,,,})e (4.107)

= r2(n,,,{Ai,}{0,,})e (4.108)

Al..,.,,, = r2(/i„{0,,}{Q,,,}), (4.109)

= r''{exyM{^xxx})e (4.110)

= r2(Q,,,{/i,}{e,,})e (4.111)

AL,,„,, = r2(;.,{0,,}{n,,J), (4.112)

= r^Q,,{^iy}{Q,,y}), (4.113)

= r2(Q,,,{^,}{0,,}), (4.114)

XLy,xy,x = r'{nAQxy}{^xxy})e (4.115)

= T'{Qry{tix}{n.xy})e (4-116)
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components H-F multiplicity
vT vT vT"
^1,1' -^w-w ^^z,z 1

Table 4.1: Different estimators and H-F multiplicity for A^^

components H-F multiplicity

VS V'S -^3
1,1,1,1' y,!/,!/,!/' 2,2,2,2

X^ vS y3
V-y>z,z

1

2

Table 4.2: Different estimators and H-F multiplicity for A'^^^
.^ ,5

are exactly the same. It would be meaningless to evaluate both of them in a

simulation, because both would result in the same number.

In Tables 4.1-4.11 are listed components of each atomic polarizability, which

are both non-zero and not related by trivial symmetries. For example, in Table 4.2

are not written the components Xly^y, A'^
^ y^, Xl^.^y, X^^y,., X^y,^,. because

they are equivalent to the one already written (X^^^yy), which we picked as a

representant of them. By H-F multiplicity is meant the number of different

estimators of a component due to the different applications of the Hellmann-

Feynman theorem.

The total number of estimators for each polarizability is given in Table 4.12.

In total there are 542 possible different non-equivalent estimators of atomic po-

larizabilities up to the sixth degree.

components H-F multiplicity

V2 Vl V2
^ii,i,i' ^yy,y,y^ ^^zz,z,z

Y2 y2 y2 y2 y2 v2
-^li,y,!/' ^^11,2,2' ^'•y!/,2,2' '^yy,x,xi '^zz,x,x^ ^^z:,y,y

V2 v2 \-2Y2
'~ v2 Y

iv.i.iy' yz.v.zi xz.x,z

2

2

3

Table 4.3: Different estimators and H-F multiplicity for X'^^.^^^
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components

11,11' yy,yyi zz,zz
vl yl yl
xx,yyi " xx,zz^ yv

A, , A„, ..,, Aj.

H-F multiplicity

xx,yy "II,Z2' --yy,zz

xy.xy -"yz.yzi "xz,xz

1

2

1

Table 4.4: Different estimators and H-F multiplicity for Xlp.^g

components





Chapter 4. Quantum Monte Carlo Estimators of Atomic Polarizabilities 58

components H-F multiplicity
v-3 JF5 Y^ 2^xx,xx,x,x' yy,yy,y,y '^zz,zz,z,z
\'3 V'S y3 v-3 y3 V3 2
^ii,xx,s/,y' -^ii,ii,z,2' '^'l/s/,!/y,z,z' ^'•yy,y!/,i,i' '^ zz,zz,x,x^ '^zz,zz,y,y ^

Y3 ^'3 vS 4
-''iz,y2,i,y' ^I2,iy,y,z' ^ly.yz.i.z ^

Y3 y3 y3 y3 y3 y3 4
^iy,yy,z,y' ^iy,ii,i,y' ^iz,ii,i,z> ^'iz.zz.i.z' -^yz,yy,y,2' ^y2,zz,y,z ^

A'^ X^ X^ 4^'^ly.zz.i.y ^'xz,yy,i,z' ^'•yz,ii,y,z ^
V3 v3 y^ *?

^ii,yy,2,z' -^11,zz,y,y' ^^yy,zz,i,i "
vZ yZ v3 \-3 V-3 v3 q
^xx,yy,y,y> ^^yy,ii,x,i> ^ii,zz,z,z' ^zz,zi,i,x> '^yy,zz,z,zi zz,yy,y,y "
V-3 v-S yZ 2
-^iy,xy,2,2' -^iz,i2,y,y' ^yz,yz,i,i ^

Y3 y3 y3 y^ Y"' T^ 2^xy,xy,y,yi -^iy,m,i.i' -^iz.iz,!,!' '^xz,xz,z,z^ ''yz,yz,y,y '^yz,yz,z,z

Table 4.7: Different estimators and H-F multiplicity for A'^^^^ ^^

components H-F multiplicity

Y"^ Y^ X^ 1
^ ii,ix,ii' yy,yy,yy^ '^zz,zz,zz

Y2 y2 y2 y^ X"^ X'^ 2
ix,xx,yy' iijXi,zz' ' yy.yy,zzi ' yy,yy,xxi ^ zz,zz,ii' zz,Z2,yy

Y2 \'2 Y^ A''^ Y^ Y'^ 2
xy,xy,yy> ^xy,xy,xxi ^^xz,xz,xx^ ^xz,xz,zz'> yz,yz,yy> ''^yz,yz,zz ^

Y2 3^xy,yz,xz "

Y2 3' xx,yy,zz

Y2 y2 Y^ 2' xy,xy.zzi ^ xz,xz,yy' '^yz.yz,xx

Table 4.8: Different estimators and H-F multiplicity for A'^^^^
^^

components H-F multiplicity

X^ Y^^ Y^ 2
^iii,x,x,i' ^^yyy.y.y.y ^'zzz.z.z.z

Y2 y2 X'2 Y^ Y'^ Y'^
xxy,y,y,y ^'ixz,z,z,z' ^^i/yi,i,i,i' ^ '•yyz.z.z,!' '''2zx,i,i,i' ' zzy,y,y,i

Y2 y2 y^ y^ y^ Y^ 3
^^xxy,x,x,y: '^xxz,x,x,zi ^*-yyi,y,y,x' ^^yyz,y,y,zi -"^ zzx,z,z,xi '^zzy,z,z,y "

Y2 Y2 Y2 Y2 A'^ Y2 *?

^'iii,i,y,y' ^'xii,x,z,z' ^*-yyy,y,i,i' ^'j/yy,y,z,z' ^'zzz.z,!,!' ^''zzz.z.y.y "

Y2 y2 Y2 Y^ Y^ Y^ '\

^xxy,y,z,zi ^iiz,z,y,y' "^yyi,i,z,z' ^^yyz,z,i,i' ^^zzi,i,y,y' ^^zzy,y,i,i "

Y2 4
^'xyz.i.i/.z

2

Table 4.9: Different estimators and H-F multiplicity for A'^^..^^ ^

,
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components

X^ X^ V^
111,11,1' yyy,yy,y^ zzz,zz,z

y2 v-Z V'2 y2 y2
^iii,yy,i' -^111,21,1:' ^yyy,xx,y'> yyy,zz,y< ^zzz,xx,z
y2 v2 v2 v-2 y2 y2
^xxx,xy,yi ^xxx,xz,z^ ^yyy,xy,x' ^^!/yy,yz,i' ^*-z2z,ij,i' ^zzz,yz,y
y2 v2 V'2 V'2 y2 v'2
'^iiy,ii,y' -^iiz,ii,2' ^yyx,yy,x^ yyz,yy,z^ ^zzi.zz.i' ^zzy.zz,;
V'2 y2 v2 v2 v2 v2

V'2 V'2
^iiy,zz,y'-^iiz,yy,2' ^-yyx,zz,x^ "yyz,xx,z^ ^^zzx,yy,x^ "zzy,xx,y
V'2 V'2 V'2
^^iyz,iy,z' ^iyz,iz,z' ^iyz,yz,i
y2 V'2 V'2 V'2 \'2 V'2
Iiy,y2,z' iiz,y2,y' yyi,iz,z' yyz,iz,i' zzi,iy,y' zzy,xy,i

V'2 V'2 V'2 v2 V'2 y2
-^-i..^,. n,,. ,.j '^XIZ.ZZ.Z' WWI.XX.X' UWZ.ZZ.Z' Z2T.IX.T'

H-F multiplicity

Y2
s' -^zzz,yy,2

z,ii,z' - -yyx,yy,xi - -yyz,yy,zi - -zzi,zz,i' - "zzy.zz,;
V'2 V'2 y2 V'2

z,xz,x> ^yyx,xy,y^ '^yyz,yz,yi ^22x,xz,z> -^zzy,yz,
y2 Y^ \'2 V2

5.yy.-2' ^yyx.zz.x' '^^yyz,xx,z^ ^zzx,yy,x^ '^zzy,xx,

xxv,yy,V> 'xxz,zz,z^ - "-yi/i.xx.x' " "-yi/z.zz, 'zzy.TO.y

3

3

3

3

3

3

3

3

3

Table 4.10: Different estimators and H-F multiplicity for A'^^^^^
^

components H-F multiplicity

"Y

1

vi v-

1

xxx,xxi' yyy,yyy^ zzz,zzz
V'l
^xyz.iyz
v' 1 Y

1

Y '^

^xxy,zzy^ ^iiz,yyz' -^yyx^zzx
Vl
III,yyx

V'l

V'l vl
III/.Ill/' 12

Yi \'i Y^ Y^ Y'
' ^iii.zzi' ' yyy,xxy yyy,zzyi -"^ zzz,xxzi ^^zzz,yyz

.Xyyx,yyx'
Yi
^^yyz.yyz

Y^ Y^
' ^ zzi.zzi' ^ zzy,zzT/

1

1

2

2

1

Table 4.11: Different estimators and H-F multiplicity for A'^^^^,^

polarizability





Chapter 5

Technical Details

5.1 Trial Functions

The choice of a trial function * is very important for designing a quantum Monte

Carlo simulation. For node-less systems the quality of the trial function affects

the efficiency of the simulation, the variance of estimate. For systems with nodes

the quality of * affects the magnitude of the fixed-node error. Thus, in our

simulations we use trial functions which satisfy some conditions characteristic of

high quality: low variational ground-state energy, high overlap integral with the

exact solution, among other criteria.

Of course, in the case of the hydrogen atom, the choice of * is simple and

straightforward. Hydrogen atom has an electronic Hamiltonian given by (atomic

units) ! '

Uo = -lv'-l (5.1)
Z r

and the corresponding Schrodinger equation can be analytically solved. The

normalized ground-state wavefunction of the hydrogen atom is

xl>{r) = -—exp{-r) (5.2)
\/7r

(5.3)

the drift vector field (2.29) is equal to
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This makes all weights (4.8) equal, and we don't have to calculate them. They

can be set to one in all atomic polarizability estimators (4.26-4.135).

The exact ground-state solution of the Schrodinger equation for the helium

atom with the Hamiltonian given by

Ho = -^(v? + V^)-2(l-fi)+i- (5.5)
^ ^ ^ \ri T2J Tu

is not known. Any trial function is therefore an approximation to the exact

solution.

We use a trial function which is a result of a sophisticated optimization of its

variational energy [76, 77]. The symmetric spatial part of the trial function has

the following form ^

>I'(ri,r2)= $(1)$(2) J5M (5.6)

where the atomic orbitals $ are a linear combination of four Slater-type orbitals

$ = Ci0i,(Cl.) + C2(i>2s{C,l,) + C3<l)2s{(:l) + CihsiQs) (5.7)

and JsM is a Schmidt-Moskowitz electron correlation factor

JsM = exp i:^.(rTrT+rT''rT)fr^
.it=i

(5.8)

f^ = —-^ -,1 = 1,2 (5.9)
1 -I- or.

The values for all parameters b, d, Cj, Cis, C251 Cls' C3s ^^nd gk, rrik, rik, Ok are given in

Table 5.1. We correct a misprint for one of the published parameter, C4 in [76].

The corresponding drift and local energy are complicated functions of the

configuration vector R = [xx,yi, z\,X2, j/2i 22] and were implemented by M. Snajdr

'The spin part has the antisymmetric singlet form (q(1)/3(2) - a{2)^{\))l \/{2).
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par.
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Based on a trial run, which showed us the size of fluctuations of the local

energy, we decided to truncate the exponent of the branching factor as follows

-TiEl^ - Et) if \t{E'°J -Et)\< 0.5ro
(i).12)

^
0.5rosign[-r(£;|°/ - £;t)] otherwise

where tq is the maximum time-step used in the simulation.

Similarily, the drift can be for some configurations a very large vector in the

case of helium, which would "push" a particle very far away from a region of

reasonable probability and potentially also cause a bias. We chose the following

truncation

rF= I

tY if IrFl < 2.7ro

(5.13)

i^2.7ro otherwise

5.2 Design of the Simulation

The basic structure of the simulations is as described at the end of Chapter 2.

The quantities we are going to directly estimate are the exact expectation values

{^Jx {Aii})e, (My {Aiy})e, • • • , {^zzx {^zzx})e-, {^zzy {^zzy])e required for all different

estimators of atomic polarizabilities (Tables 4.1-4.11). There are 599 expectation

values. After finishing each time-step, they will be combined according to the

formulas (4.26-4.135) to obtain all 542 polaziability components estimates.

In order to do that, we have to evaluate on each iteration 15 multipole mo-

ments operators (3.9, 3.16, 3.17): /Zi, tiy, n^, 9xx, Q,jy, Qxy, ©xz, Qyz, ^ny, ^xxz,

^yyx, ^yyz, ^zzx, ^zzy, ^xyz- AH Other compoueuts of multipolc moments can be

calculated from these using their traceless form; for example, ©n = —Qyy — Qzz

or Qxii = —^yyx — ^zzx- We also have to store these values for each particle in the

memory for 2L — 1 successive iterations to be able calculate their cummulative

values (Chapter 2).



,1

1
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For verification purposes, in the case of He atom the simulation estimated

also the ground-state energy and the overlap integral of the trial function with

the exact solution. The output of the simulation was a set of 542 (and the energy

and the overlap integral for He) estimates^ of all polarizabilities components for

all time-steps and all values of L (542 x Nx x Nl values in total).

The simulation was dependent on an initial random number generator seed.

Therefore, by running the same simulation for different seeds we could obtain

output files containing uncorrected estimates of polarizability components. This

is especially advantegous when the simulations can be run at once on a parallel

computer, which was the ceise.

A separate code was used to combine all available output files to get one file

containing 542 estimates of all components with their standard deviations. Each

quantity was averaged through the different independent files, the standard devi-

ation corresponds to the dispersion of those independent values. These estimates

were extrapolated by a suitable model (constant, linear, quadratic) to get the

final r —> intercept for each of 542 components and each value of initial L.

5.3 Combining Different Estimators

The objective of this work is to estimate all atomic polarizabilities up to the

sixth degree for H and He atoms. In other words (Table 3.1), we have to estimate

one specifying constant for A'^^^, A^^^^^,,, A^^.^^, X^g^^g, ^^a,(},^,s,e,c ^^afl,7,<5,e,C'

A'a/3,7rf,.C' ^^'a/37Ae,C' ^^'a/37,<5e,C' ^^0yM tensors and two for the A^^.^^,^^ tensor.

It is convenient to choose the specifying constants to be particular compo-

nents of each given polarizability tensor. Natural choice is to estimate the follow-

ing polarizability tensors components: A]_j., A^^ ^ j, A^^ ^^, A]^^^, A'^^ ^^ ^ ^,

yi x2 ys Y^ V' and V'' X'^ fthat
^xi.i,1,1,1' '^11,11,11' -^'^111,1,1,1' '111,11,1' ^'111,111 a-»i>J ''•ii,ii,i,x' ^xx,xx,y,y V^'*"''

^Just the results of the estimators, not standard deviations
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is, twelve quantities for an atom).

The reason why our simulation evaluates all 542 estimators is to decrease the

statistical error. By using all of them in the way described below we decreeise

the variance of final polarizability estimates. The technique of keeping all the

estimators separately during the r extrapolation allows us to deal with the time-

step bias of different estimators separately. It also accounts for differences in

variances of different estimators.

The extrapolation procedure gives us 542 r —> intercepts for each of Ni

initial values of L. Now we need to combine them to get the final estimates of

the twelve polarizabilities. The way this is done for all polarizabilities except

^11,11,1,1 ^^'^ -^xx,xx,y,y ^^ simply to use all the spherical symmetry relations

(3.95-3.104). The final estimate is then given by the variance-weighted average'^

of all relevant different estimators multiplied by a corresponding factor, as it is

in the symmetry relations.

The final estimates of A"^^^^^ 3. and X^^.^^yy require a special procedure of

combining the different components of A'^^ .^^, (.. It is due to the fact that the

polarizability has two specifying constants and its components satisfy a system

of linear equations (3.105). Thus, its components are not related to each other

just by a multiplicative constant, as it is for all other polarizabilities up to the

sixth degree.

The procedure is in essence estimating the two constants ci,C2 in the system

(3.105) by using all 111 (Table 4.12) different estimators. That is done in three

steps:

1. Calculate averages (and standard deviations) of all components related by

a permutation. This corresponds to calculating averages of all estimators

written on the same line in Table 4.7 (nine of them). By doing this, we will

^That is the meiximum likelihood estimator
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obtain estimates of the left-hand sides of the system (3.105)

2. Because we have nine equations and two unknowns Ci and ca, there are

^ = 36 pairs of linear equations which can be uniquely solved for Ci,C2.

By evaluating all possible expressions from all those systems of two linear

equations picked from the original system, we will get only 32 pairs of

solutions, because 4 of the 36 systems are singular (they can be satisfied

for any Ci and C2). Moreover, 8 of the 32 solutions for each constant are

the same, because of the two equations in (3.105) which contain only one

specifying constant. Therefore, we will end up with 25 unique estimates for

Ci and C2.

3. Finally, we take the variance-wighted average of these twenty-five estimates

for each of the two specifying constants and we use these to calculate

^xx,xx,x,x ^^^ ^xx,xx,y,y ^^^ their Standard deviations by the first two equa-

tions of (3.105)

The simulations were programmed in C language (~6000 lines of code), and

the extrapolation and combination of results was done by using a package of

macros in Physica [80]. For the production runs we used 64 R12 000 processors

(400 MHz) of host Borealis at the University of Alberta.

5.4 Initial Values of Simulation Parameters

According to the outline in Section 2.5, the first step of a QMC simulation is

initialization of parameters, such as the number of particles and iterations, values

of time-steps, etc. Of course, they affect the overall perfomance of the simulation.

For example, the CPU time spent by a simulation depends linearly on the

initial number of particles N^q, on the initial number of iterations A^,o, and roughly
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parameter H





Chapter 6

Results and Conclusions

We invested roughly the same amount of CPU time for both H and He simula-

tions: 1500 independent simulations (Section 5.4), each of which took approxi-

mately 10 hours on R12 000 processor running at 400 MHz (15000 h=625 days

on a single processor for each atom) . The data from all the simulations were aver-

aged (Section 5.2) and then r —> extrapolated. In order to obtain estimates of

atomic polarizabilities which are not biased by a particular extrapolation model\

two natural models were chosen:

1. quadratic fit of values of a quantity A' at all six chosen time-steps

X{T)^a + bT + cT^ (6.1)

2. linear fit of values of .Y at the three smallest time-steps

X{T)^a + bT (6.2)

The r = intercepts (coefficients a above) together with their standard deviations

were combined (Section 5.3) and the first values with no finite-L-bias were found

(Figure 2.2). The final results of both extrapolations were compared. In cases

where the two estimates did not overlap within their standard deviations, an

average of them and a corresponding standard deviation covering both values were

chosen to be the final estimate. By doing this, we believe that we obtained r ->

extrapolation model bias-free estimates of the ground-state atomic polarizabilities

of H and He atoms, Table 6.1.

'The true r-dependence of a polarizability is not known.
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with two significant digits—this is an outcome of six dipole moments and their

cummulative values entering the formulas (4.38-4.41). The other results with

rather low precision are A'^^,^^,^^, Axxi,x,i,i and possibly A'^^x.xx.i. all due to

the mixing of three quadrupole moments, octupole moment with three dipole

moments and octupole, quadrupole and dipole moment, respectively.

In the case of the helium atom, there is clear increase in the standard de-

viations of the results in comparison with the hydrogen atom. This is because

of the additional noise of the past-future weights now entering every QMC es-

timator (4.26-4.135). Again, all the helium polarizability estimates cover the

reference values within the statistical error. Assuming that the results from [26]

are very accurate, we can conclude that the r -^ extrapolation model bias was

successfully removed by combining the linear and quadratic model. Because of

that decrease of the precision of helium polarizabilities (except A'] ^), some of the

higher order ones have only one to two significant digits. The worst case is again

the X^
.J. .J. .J. .J. .J.

polarizability, with approximately 18% relative error.

In summary, we applied the infinitesimal differential QMC techique to esti-

mate all atomic polarizabilities up to the sixth degree. We derived all indepen-

dent QMC estimators of the non-zero polarizabilities and developed a procedure

to combine' them according to the symmetry relations in order to increase the

efficiency of the simulation and to decrease the statistical errors of the estimates.

Finally, we successfully used these theoretical results to estimate the atomic polar-

izabilities of H and He atoms, using two r —> extrapolation models to obtained

unbiased results.

The presented quantum Monte Carlo technique promises to be a very pow-

erful ab initio method to estimate polarizabilities of larger systems, although

the results would suffer from a bias due to the fixed-node approximation. For

larger atoms, the technique can be applied without further changes. In the case



'

' r ' v,
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of molecules, the algebra behind the molecular polarizability tensors is somehow

more complex and corresponding modifications are neccessary. Non-electronic

effects would also have to be included, such as vibrational and rotational correc-

tions.

The quality of the used trial function affects the variance of expectation values

of properties, and it is expected to increase for many fermion systems. One source

of this variance is the fluctuating paist-future weights. An attractive solution

to this problem is to assume that the trial function is sufficiently close to the

unknown exact solution so that all past-future weights are equal to one. Although

this would certainly bias the estimates, the statistical error would considerably

decrease, and they may still provide useful approximates of the polarizabilities.





Appendix A

Units of Polarizabilities

The conversion factors from atomic units to SI units for polarizabilities in Ta-

ble 3.1 are based on fundamental constants from www.nist.gov/srd/online.htm :

A=5.29177208 x lO-^^ m, Q = 1.60217646 x 10"^^ C, U = 4.3597438 x IQ-^^ J

for l.a.u. of the length, charge and energy, respectively.

The conversion factor of a polarizability, which is defined as a coefficient

in (3.23, 3.24) contracted with k electric field components, I electric gradient

components, m electric hyper-gradient components, etc, is given by [71]

Ak+2l+3m+... ^ rjl-k-l-m-... ^ Qk+l+m+...
( \ ^\
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Appendix B

Maple Worksheets Listings

This appendix contains listings of two Maple worksheets which were used to

calculate the component definitions of atomic polarizability tensors and for-

mulas for QMC polarizabilities estimators. They are available on the web at

abraham.chem.brocku.ca/~mhornik/index.html, where they can be also down-

loaded (there are more worksheets related to this thesis than the following two).

They run under Maple V Release 5, Version 5.00 [75].

Although several brief remarks are provided through the codes, these list-

ings are not meant to be very explanatory (the worksheets are only a tool, not

the objectives of this thesis). The author simply wanted to have an available

hardcopy of two most important Maple worksheets used in this work. Without

them the derivation of isotropic tensor definitions and the QMC estimators of

polarizabilities would have been almost impossible and extensively tedious task.

To maintain the width of the listings, too long lines were broken even though

in the code the lines are not broken. The rule is that every symbol ">" represents

a new line.

B.l Isotropic Polarizability Tensors

The following Maple worksheet was used to derive the component definitions of

isotropic polarizability tensors (3.74-3.91).

The first part is preliminary—it defines procedures for generating all possible

products of two and three Kronecker's deltas, represented by grouped sets of
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given indices (for example, SapS^s is represented by a set {{«,/?}, {7,5}}) and

auxiliary procedures which operates on sets

> restart ;unprotect (gamma)

;

> allDoubles:=proc (basis)

> local i,j, result;

> result :={};

> for i in basis do

> for j in basis do

> if not(i=j) then

> result :=result union {{i.j}};

> fi;

> od;

> od;

> result;

> end;

> deltaDoubles:=proc (basis)

> local doubleBasis.i.j .result;

> result :={};

> doubleBasis:=allDoubles (basis)

;

> for i in doubleBasis do

> for j in doubleBasis do

> if nops(i union j)=(nops(i)+nops(j)) then

> result :=result union {{i,j}};

> fi;

> od;

> od;

> result

;

.

> end;
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> deltaTriples:=proc (basis)

> local doubleBasis.i, j ,k,result;

> result :={};

> doubleBasis :=allDoubles (basis)

;

> for i in doubleBasis do

> for j in doubleBasis do

> for k in doubleBasis do

> if nops(i union j union k)=(nops(i)+nops(j)+nops(k)) then

> result :=result union {{i,j,k}};

> fi;

> od;

> od;

> od;

> result;

> end;

> setToList :=proc(set)

> local result, i;

> result : = [] ;

> for i in set do

> result:=[op(result) ,i]

;

> od;

> result;

> end;

> makeExpression:=proc(list)

> local result, i;

> result :=0;

> for i from 1 to nops(list) do ^-~"

> result :=result + C[i]*K[op(i,list)]

;
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> od;

> result;

> end;

> interchangeSet :=proc(ll,12)

> local result,!;

> result :={>;

> for i from 1 to nops(ll) do

> result •.=re suit union {op(i,ll)=op(i,12) ,op(i,12)=op(i,ll)};

> od;

> result;

> end;

> interchange :=proc (11, 12, what)

> subs (interchangeSet (11, 12) , what);

> end;

The following procedures apply given trivial symmetries and vanishing trace

equation and identify all left specifying constants

> syininetryRelation:=proc(ll,12,list,cList)

> local changedList,i,j .result ; result :={>;

> changedList :=interchange(ll,12,list)

;

> for i from 1 to nops(list) do

> for j from 1 to nops(changedList) do

> if op(i,list)=op(j .changedList) then

> #print(C[i]=C[j]);

> result :=result union {op(i,cList)=op(j ,cList)};

> fi;

> od; -~-

> od;

> result;





Appendix B. Maple Worksheets Listings 77

> end;

> createCList :=proc(list) '

"

> local result , i

;

> result : = [] ;

> for i from 1 to nops(list) do

> result :=[op(result) ,C[i]]

;

> od;
.

> result;

> end;

> buildExpression:=proc(cList,iList)

> local result, i;

> result :=0;

> for i from 1 to nops(cList) do

> result :=result + op(i,cList) * K[op(i, iList)]

;

> od;

> result

;

> end;

> changeCListViaSymmetry :=proc(ll, 12, iList ,cList)

> local result, symmetrySet.i;

> result :=cList

;

> symmetrySet :=symmetryRelation(ll,12,iList,cList) ;#print(syinmetrySet) ;

> for i in symmetrySet do

> result :=subs({i}, result);

> od;

> result;

> end;

> contractList:=proc (si, s2, iList)

> subs ({sl=s2} , iList)

;



V.
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> end;

> traceEquation:=proc(sl,s2,iList,cList)

> local leftover, leftOverCList, i,

j

,k, temp, temp2,temp3,

replacement , couple , doneTerms , express , resultSet , NE

;

> leftover :=contractList (si ,s2,iList)

;

> leftOverCList :=cList;

> Sprint ('simplifying 3 contractions:');

> for i from 1 to nops (leftover) do

> temp:=op(i, leftover)

;

> for j from 1 to nops (temp) do

> temp2:=op(j ,temp)

;

> if nops(temp2)=l then

> #print( 'found in ', i, temp);

> temp:=temp minus {temp2};

> leftOver:=subsop(i=temp, leftover)

;

> leftOverCList :=subsop(i=3*op(i, leftOverCList) .leftOverCList)

;

> break;

> fi;

> od;

> od;

> #print( '3-contractions completed.');

> #print( 'simplifying 1-1 contraction:');

> for i from 1 to nops (leftover) do

> temp : =op(i, leftOver) ;#print(' term '.ternp);

> couple :={>;

> for j from 1 to nops (temp) do

> temp2:=op(j ,temp)

;

_ --

> if member (s2, temp2) then
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> couple :=couple union {temp2};

> fi;

> od;

> if not(couple={}) then

> #print( 'match found: ', op (couple) )

;

> replacement := (op (1, couple)

minus {s2}) union (op(2, couple) minus {s2})

;

> temp:=temp minus {op(l .couple)};

> temp:=temp minus {op (2, couple)};

> temp:=temp union {replacement};

> leftOver:=subsop(i=temp, leftover)

;

> fi;

> od;

> #print (leftover)

;

> #print(leftOverCList)

;

> #print(buildExpression(leftOverCList ,leftOver)=0)

;

> #print(' building the equations for coefficients');

> resultSet :={};

> doneTerms :={};

> NE:= nops({seq(op(i, leftover) ,i=l. .nops(leftOver))})

;

> for i from 1 to NE do

> #print(' choosing the ',i,'-th term');

> j:=l;while member (op( j .leftOver) , doneTerms) do j:=j+l; od;

> #print('j = ' ,j ,op(j .leftover) , 'chosen')

;

> express :=0;

> for k from 1 to nops (leftOver) do

> if (op(k,leftOver)=op(j .leftover)) then _ --

> express :=express+op(k,leftOverCList)

;
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> fi;

> od;

> resultSet :=resultSet union •Cexpress=0>;

> doneTerms : =doneTerms union {op(j .leftOver)};

> od;

> resultSet;

> end;

> allIndexSyinm:=proc(list)

> global ID.IC;

> local i;

> for i in list do

> lC:=changeCListViaSynunetry(op(l,i) ,op(2,i) ,1D,1C)

;

> od;

> IC;

> end

;

> allTraceSyinm:=proc(list)

> global ID, IC;

> local i, resultSet;

> resultSet :={};

> for i in list do

> resultSet :=resultSet union traceEquation(op(l,i) ,op(2,i) ,1D, IC)

;

> od;

> resultSet;

> end;

The following set of instructions calculates the component definition of atomic

^a0,-ys polarizability

> #The forth order X_ab_cd ; ., ^

> basis:=-[alpha, beta, gamma, delta>;
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> ID :=setToList(dGltaDoubles (basis) )

;

> lC:=createCList(lD);

> #index symmetries (give the structure of the tensor (meaning))

> allIndexSymm( [ [ [alpha] , [beta] ] , [ [gamma] , [delta] ]

,

[ [alpha, beta] , [gamma, delta]]] )

;

> #trace equations

> allTraceSymm([ [alpha, beta] , [gamma, delta]])

;

> solve (7.) ; (subs (7., buildExpression(lC,lD)))

;

The last line will produce this output

{Ci = -|C73,C3 = C3} (B.l)

where the first line is a result of previous simplifications and the second line

corresponds to definition (3.78).

The rest of the worksheet is a similar code for calculating definitions of po-

larizability tensors of the sixth order

> #The sixth order X_a_b_c_d_e_f

> basis : =-Calpha, beta, gamma, delta, mu,nu};

> ID :=setToList(deltaTriples (basis))

;

> lC:=createCList(lD)

;

> #index symmetries (give the structure of the tensor (meaning)

)

> allIndexSymm( [ [ [alpha] , [beta] ] , [ [alpha] , [gamma] ] ,

[ [alpha] , [delta] ] , [ [alpha] , [mu] ] ] )

;

> buildExpressiondC.lD)

;

> #X_ab_c_d_e_f

> lC:=createCList(lD)

;

> #index symmetries (give the structure of the tensor (meaning))

> allIndexSymm([[ [alpha] , [beta]] , [[gamma] , [delta]] , [[gamma] , [mu]] ,
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C [gamma] , [nu] ] , [ [delta] , [mu] ] , [ [delta] , [nu] ] , [ [mu] , [nu] ] ] ) ;

> #trace symmetry

> allTraceSymm( [[alpha, beta]]) ;

> solve (•/.); (subs ('/., buildExpression(lC,lD)))
;

> #X_ab_cd_e_f

> lC:=createCList(lD)

;

> #index symmetries (give the structure of the tensor (meaning))

> allIndexSymm([[ [alpha] , [beta]] , [[gamma] , [delta]] , [[alpha, beta] ,

[gamma , delta] ] , [ [mu] , [nu] ] ] )

;

> #traces

> allTraceSymm( [[alpha, beta] , [gamma.delta]] ) ;

> solve (7,) ; (subs (*/,, buildExpression(lC,lD))) ;

> #X_ab_cd_ef

> lC:=createCList(lD)

;

> allIndexSymm( [ [ [alpha] , [beta] ] , [ [gamma] , [delta] ] , [ [mu] , [nu] ] ,

[[alpha, beta] , [gamma, delta]] , [[gamma, delta] , [mu,nu]] ,

[[alpha, beta] , [mu,nu]]])

;

> allTraceSymra( [[alpha, beta] , [gamma, delta] , [mu,nu]])

;

> solve (7.) ; (subs (•/,, buildExpression(lC,lD) )) ;

> #X_abc_d_e_f

> lC:=createCList(lD)

;

> allIndexSymm( [ [ [alpha] , [beta] ] , [ [beta] , [gamma] ] , [ [alpha] ,

[gamma] ] , [ [delta] , [mu] ] , [ [mu] , [nu] ] , [ [delta] , [nu] ] ] ) ; .

> allTraceSymm( [[alpha, beta] , [beta, gamma] , [alpha
,
gamma] ])

;

> solve (7.) ; (subs (7., buildExpression(lC,lD)))
;

> #X_abc_de_f

> lC:=createCList(lD)

;

> allIndexSymm( [ [ [alpha] , [beta] ] , [ [beta] , [gamma] ] , [ [alpha] , [gamma] ] ,
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[[delta], [mu]]]);

> allTraceSyinm( [[alpha, beta] , [beta, gamma] , [alpha ,
gamma] , [delta, mu]] )

;

> solve (7.) ; (subs (•/., buildExpression(lC,lD)))

;

> #X_abc_def

> lC:=createCList(lD)

;

> alllndexSymmC [ [ [alpha] , [beta] ] , [ [beta] , [gamma] ] , [ [alpha] , [gamma] ] ,

[[delta] , [mu]] , [[mu] , [nu]] , [[delta] , [nu]] , [[alpha, beta, gamma]

,

[delta, mu, nu]]] )

;

> allTraceSymmC [[alpha, beta] , [beta, gamma] , [alpha ,
gamma] , [mu, delta] ,

[mu,nu] , [delta, nu] ] )

;

> solveC/,) ;(subs(7., buildExpression(lC,lD)))

;

> #X_abcd_e_f (ZERO??)

> lC:=createCList(lD)

;

> allIndexSymm( [[[alpha] , [beta]] , [[alpha] , [gamma]] , [[alpha] , [delta]]

,

[ [beta] , [gamma] ] , [ [beta] , [delta] ] , [ [gamma] , [delta] ] , [ [mu] , [nu] ] ] )

;

> allTraceSymm([ [alpha, beta] , [alpha ,
gamma] , [alpha, delta] , [beta, gamma]

, [beta, delta] , [gamma, delta]])

;

> solve (7.) ;( subs ('/., buildExpression(lC,lD)))

;

> #X_abcd_ef (ZERO??)

> IC : =createCList (ID)

;

> allIndexSymm( [ [ [alpha] , [beta] ] , [ [alpha] , [gamma] ] , [ [alpha] , [delta] ] ,

[ [beta] , [gamma] ] , [ [beta] , [delta] ] , [ [gamma] , [delta] ] , [ [mu] , [nu] ] ] )

;

> allTraceSymm([ [alpha, beta] , [alpha
,
gamma] , [alpha, delta] , [beta, gamma] ,

[beta, delta] , [gamma, delta] , [mu,nu]])

;

> solve(7.);(subs(7., buildExpression(lC,lD)));

> #X_abcde_f

> lC:=createCList(lD)

;

> allIndexSymm( [ [ [alpha] , [beta] ] , [ [alpha] , [gamma] ] , [ [alpha] , [delta] ]

,
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[[alpha] , [mu]] , [[beta] , [gamma]] , [[beta] , [delta]] , [[beta] , [mu]] ,

[ [gamma] , [delta] ] , [ [gamma] , [mu] ] , [ [delta] , [mu] ] ] )

;

> #it looks like a zero??

> allTraceSymm( [[alpha, beta]])

;

> #yes, this is ZERO!

> solve ('/.); (subs ('/,, buildExpression(lC,lD))) ;

B.2 Atomic Polarizabilities Formulas

This Maple worksheet produces all quantum Monte Carlo estimators of all non-

equivalent components of atomic polarizabilities up to the sixth order. If the

spherical symmetry simplification procedures are turned off, it will calculate es-

timators for a general system with no symmetry.

First, the worksheet defines the perturbed Hamiltonian, its cumulative value,

the past-future weight and a procedure for generating any Hellmann-Feynman

derivative of the ground-state energy

> restart:

> h[i] := hO[i]-mu[x] [i]*F[x]-mu[y][i]*F[y]-mu[z] [i]*F[z]

-l/3*theta[zz] [i] *F[zz]-l/3*theta[xx] [i] *F[xx]-l/3*theta[yy] [i]*F[yy]

-2/3*theta[xz] [i]*F[xz]-2/3*theta[yz] [i] *F[yz] -2/3*theta[xy] [i]*F[xy]

-l/15*0mega[xxx] [i]*F[xxx]-l/15*0mega[yyy] [i]*F[yyy]

-3/15*0mega[xxy] [i] *F[xxy]-3/15*0mega[zzy] [i]*F[zzy]

-6/15*0raega[xyz] [i]*F[xyz]

;

> Ch[i] :=-Cmu[x]}[i]*F[x]-{mu[y]}[i]*F[y]-{mu[z]}[i]*F[z]

-l/3*{theta [zz] } [i] *F [zz] -l/3*{theta [xx] } [i] *F [xx]

-l/3*{theta [yy] } [i] *F [yy] -2/3*{theta[xz] > [i] *F [xz]

-2/3*-[theta [yz] } [i] *F [yz] -2/3«{theta [xy] } [i] *F [xy]

-l/15*{0mega[xxx]>[i]*F[xxx]-l/15*{0mega[yyy]>[i]*F[yyy]

-3/15*{0mega[xxy] } [i] F [xxy] -3/15*{0mega[zzy] } [i] F [zzy]
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-6/15*{0megaCxyz]>[i]*F[xyz]
;

> w[i] :=omega[i]*exp(-tau*Ch[i])

;

> VarSeq: = CF[x] ,F[y] ,F[z] ,F[zz] ,F[xx] ,F[yy] ,F[xy] ,FCxz] ,F[yz] ,F[xxx] ,

F [yyy] , F [xxy] , F [zzy] , F [xyz] ]

;

> Zeroes:={seq(op(i,VarSeq)=0,i=l. .nops(VarSeq))};

> HFDerivative:=proc(x)

> SumCdiff (h[i] , x)*w[i], i)/Sum(w[i] ,i) ;

> end;

> readlib(coeftayl)

;

Then it contains definitions of all important spherical symmetries, which will

be used to simplify a raw result of differentiation

> DipoleS3niimetriesl:={S\im(mu[z] [i] *oniega[i] ,i)=0,

Suin(-Cmu[z]}[i]*omega[i] ,i)=0,Siiin({mu[z]}[i] ~3*omega[i] ,i)=0,

Sum(mu[x] [i]*omega[i] ,i)=0,Sum({mu[x]}[i] *omega[i] ,i)=0,

Sum({mu[x]}[i]*3*omega[i] ,i)=0,

Siam(mu[x] [i] *{mu[x] }[i] *2*omega[i] ,i)=0,

SumCmuCz] [i] *{mu[z]}[i] "2*omega[i] ,i)=0,Sum(mu[y] [i]*omega[i] ,i)=0,

Sum(-[mu [y] } [i] *omega [i] , i) =0 , Suin({mu [y] } [i] "3*omega [i] , i) =0

,

SumCmuCy] [i] {mu[y] >Ci] '2*omega[i] ,i)=0>;

> DipoleSymmetries2:=-[Sum(mu[x] [i] {mu[y]}[i] *omega[i] ,i)=0,

Sum(mu[y] [i] *{mu[x]}[i] *omega[i] ,i)=0,

Sum(mu[x] [i] *{mu[z]}[i] *omega[i] ,i)=0,

Sum(mu[z] [i] *{mu[x]}[i] omegafi] ,i)=0,

SumCmuCy] [i] *{mu[z]}[i] *omega[i] ,i)=0,

Sum(mu[z] [i] *{mu[y3}[i] *omega[i] ,i)=0,

Sum({mu [x] } [i] {mu [y] > [i] omega [i] , i) =0

,

Sum({mu [x] > [i] *{mu [z] } [i] *omega [i] , i) =0

,

Sum({mu[y] } [i] {mu[z] > [i] *omega[i] , i)=0}

;



•; <.

;
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> DipoleSynimetries3:={Sum(mu[x] [i]*{muCy]>Ci] "2*omega[i] ,i)=0,

Sum(mu[y] Ci]*{mu[x]}[i] "2*omega[i] ,i)=0,

Sum(mu[x] [i] *{inu[z]}[i] "2*omega[i] ,i)=0,

Siun(mu[z] [i]*{mu[x]}[i]"2*omega[i] ,i)=0,

Sum(mu[y] [i] *{mu[z]}[i] *2*omega[i] ,i)=0,

Sum(mu[z] [i] *{mu[y]}[i] *2*omega[i] ,i)=0,

SiunC-Cmu [x] } [i] *{mu [y] } [i] ~2*omega [i] , i) =0

,

Sum(-Cmu [y] } [i] *{mu[x] } [i] ~2*omega [i] , i)=0

,

Sum({mu[x]}[i]*{mu[z]}[i]~2*omega[i] ,i)=0,

Siim({mu [z] } [i] {mu [x] } [i] "2*omega [i] , i) =0

,

Suin(-Cmu[y]}[i]*{mu[z]}[i]*2*omega[i] ,i)=0,

Sum({mu [z] } [i] *-[mu [y] > [i] *2*omega [i] , i) =0

,

Siun({mu [x] > [i] *{mu [y] } [i] {mu [z] } [i] *omega [i] , i) =0}

;

> DipoleSyinmetries4:={Sum(mu[x] [i] *{mu[x]}[i] {mu[y]}[i] *omega[i] ,i)=0,

SumCmu [y] [i] *{mu [y] } [i] *{mu [x] } [i] *omega [i] , i) =0

,

SiomCmu [x] [i] *{rau [x] } [i] *{mu [z] > [i] *omega [i] , i ) =0

,

Svim(mu[z] [i] *{mu[z]}[i] *{mu[x]}[i] *omega[i] ,i)=0,

SumCmu [y] [i] *{mu [y] > [i] *{mu [z] } [i] *omega [i] , i) =0

,

Sxim(mu[z] [i] *{mu[z] }[i] {mu[y] } [i] *omega[i] ,i)=0,

SumCmu [x] [i] *{mu[y]}[i]*{mu[z]}[i] *omega[i] ,i)=0,

SumCmu Cy] [i] *{mu[x]}[i]*{mu[z]}[i] omega [i] ,i)=0,

SumCmu [z] [i] {mu [x] } [i] {mu [y] } [i] omega [i] , i)=0>

;

> DipoleSymmetries:=DipoleSymmetriesl union DipoleSymmetries2

union DipoleSymmetries3 union DipoleSymmetries4;

> QuadrupoleSymmetriesl:={SumCtheta[zz] [i]^omega[i] ,i)=0,

SumC{theta[zz]>[i] omega [i] ,i)=0,SumCtheta[xz] [i] omega [i] ,i)=0,

SumC{theta[xz]}[i] omega [i] ,i)=O.SumCtheta[xx] [i] omega [i] ,i)=0,

SumC{theta[xx]}[i] omega [i] ,i)=0,SumCtheta[yz] [i]^omega[i] ,i)=0.
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Sum({theta[y2]>[i]*omega[i] ,i)=0,Suin(thetaCyy] [i]*omega[i] ,i)=0,

Sum({theta[yy]}[i] omega [i] ,i)=0,Sum(theta[xy] [i] *omega[i] ,i)=0,

Suin({theta[xy]}[i]*omega[i] ,i)=0};

> QuadrupoleSyinmetries2:={Suiii(theta[xz] [i]*omega[i]*{mu[x]}[i] ,i)=0,

Sum(theta[xz] [i] *omega[i]*{mu[y]>[i] ,i)=0,

Suin(theta[xz] [i]*omega[i]*{mu[2]}[i] ,i)=0,

Suin(theta[xy] [i] *omega[i]*{mu[x]}[i] ,i)=0,

Sum(theta[xy] [i] omega [i]*{mu[y]}[i] ,i)=0,

Sum(theta[xy] [i] omega [i]*{mu[z]}[i] ,i)=0,

Sum(theta[yz] [i] omega [i]^{mu[x]}[i] ,i)=0,

Sum(theta[yz] [i] omega [i]+{mu[y]}[i] ,i)=0,

Sum(theta[yz] [i] omega [i] {mu[z]}[i] ,i)=0>;

> QuadrupoleSymmetries3:={Svmi(mu[x] [i] {theta[xx] }[i] omega [i] ,i)=0,

Sum(mu[y] [i] {theta[xx]}[i] omega[i] ,i)=0,

Sum(mu[z] [i] {theta[xx] }[i] *omega[i] ,i)=0,

Sum(mu[x] ti] {theta[yy]}[i] omega [i] ,i)=0,

Sum(mu[y] [i] {thetaCyy] }[i] omega [i] ,i)=0,

SumCmuCz] [i] {theta[yy]> [i] omega [i] ,i)=0,

Sum(mu[x] [i] {theta[zz]}[i] omega[i] ,i)=0,

Sum(muCy] [i] {theta[zz]>[i] omega [i] ,i)=0,

Sum(mu[z] [i] {theta[zz]}[i] omega[i] ,i)=0,

Svun(mu[x] [i] {theta[xy] }[i] omega[i] ,i)=0,

Sum(mu[y] [i] {theta[xy] }[i] omega [i] ,i)=0,

Sum(mu[z] [i] {theta[xy]}Ci] omega [i] ,i)=0,

Sum(mu[x] [i] -[theta[yz]}[i] omega [i] ,i)=0,

Siim(mu[y] [i] {theta[yz]}[i] omega [i] ,i)=0,

Sum(mu[z] [i]+{theta[yz]} [i] omega [i] ,i)=0, -> _.

Sum(mu[x] [i] [theta[xz] }[i] omega [i] ,i)=0,
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Sum(mu[y] [i] {theta[xz]}[i] *omega[i] ,i)=0,

Suin(mu[z] [i]*{theta[xz]}[i]*omega[i] ,i)=0};

> QuadrupoleSyinraetries4:={Sum(theta[xx] [i] *{mu[x]>Ci]*omega[i] ,i)=0,

Sum(theta[xx] [i]*{rau[y]}[i]*omega[i] ,i)=0,

Siiin(theta[xx] [i] *{mu[z]} [i] omega [i] ,i)=0,

Sum(theta[yy] [i]*{mu[x]}Ci]*omega[i] ,i)=0,

Sum(theta[yy] [i]*{mu[y]}[i]*omega[i] ,i)=0,

Siiin(theta[yy] [i] *{mu[z]}[i] *omega[i] ,i)=0,

Sum(theta[zz] [i]*{mu[x]}[i]*omega[i] ,i)=0,

Siim(theta[zz] [i] {mu[y]}[i] *omega[i] ,i)=0,

Suin(theta[zz] [i] *{mu[z]}[i] *omega[i] ,i)=0};

> QuadrupoleSyininetries:=QuadrupoleSyinmetriesl

union QuadrupoleSymmetries2 union QuadrupoleSymmetries3

union QuadrupoleSymmetries4;

> OctupoleSyinmetries:={Sxim(Omega[xxx] [i]*omega[i] ,i)=0,

Sum({Omega[xxx]}[i]*omega[i] ,i)=O,Sum(0mega[yyy] [i]*omega[i] ,i)=0,

Sum(-[Omega[yyy]>[i] *omega[i] ,i)=0,Sum(Omega[xxy] [i]*omega[i] ,i)=0,

Suin({Oinega[xxy]}[i] *omega[i] ,i)=0, Sum ( Omega [xyz] [i]*omega[i] ,i)=0,

Sum ({Omega [xyz] } [i] *oraega [i] , i) =0 , Sum(Omega [zzy] [i] *omega [i] , i) =0

,

Sum ({Omega [zzy] } [i] *oraega[i] , i)=0}

;

> Symmetries :=DipoleSymmetries union QuadrupoleSymmetries

\inion OctupoleSymmetries:

> ApplySphericalSymmetry:=proc(term)

> global Symmetries;

> #simplify(term, Symmetries);

> simplify(simplify(simplify(term,DipoleSymmetries) ,

QuadrupoleSymmetries) .OctupoleSymmetries) ;

> end;
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Now follows a procedure, which does all the operations: for a given list of elec-

tric field tensor components, it calculates all possible Hellmann-Feynman deriva-

tives and then it differentiate these derivatives further to obtain the polarizability

estimator. Finally, it applies all the spherical symmetries to obtain the estimator

for atoms (a multiplicative correction factor is required)

> MakeAllFormulae:=proc(VList, Correct)

> local i, HFVars.DegList, Derivative,

TaylorList.OriginalDegree, Result, myZeroes;

global VarSeq;

> myZeroes : = [seq(0,i=l. .nopsCVeirSeq))] ;

> HFVars:={>:

> DegList :=[seq(0,i=l. .nops (VarSeq))]

:

> for i from 1 to nops(VList) do

> if (member(op(i,VList) , VarSeq, 'pos')) then

> DegList :=subsop(pos=(op(pos,DegList)+l) , DegList):

> HFVars:=HFVars union {op (pos, VarSeq)}:

> fi:

> od:

> Sprint (HFVars , DegList);

> if (HFVars<>{}) then

> for i from 1 to nops(HFVars) do

> #APPLY THE H-F TH.

> print ('Hellmann-Feynman via' , op(i, HFVars)):

> Derivative :=eval(HFDerivative(op(i, HFVars))):

> member(op(i, HFVars), VarSeq, 'pos') :

> OriginalDegree:=op(pos, DegList) :

> TaylorList:=subsop(pos=(OriginalDegree-l) , DegList):
._^ _,

> #Result:=l/OriginalDegree*coeftayl (Derivative,
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[F[x] ,F[z] ,F[z2] ,F[xx] ,F[xz] ,F[zzz]] = [0, 0,0, 0,0,0] , TaylorList) :

> Result :=l/OriginalDegree*coeftayl (Derivative,

VarSeq=myZeroes , TaylorList):

> print(subs(Sum(omega[i] ,i)=l,

taylor(expaLnd(ApplySphericalSynimetry(Correct*Result)) ,tau,10))) :

> od:

> else

> print( 'ERROR: Impossible to apply the Hellmann-Feynman theorem...'):

> fi:

> end: ;

For example, the QMC estimator of A']^ can be now obtained by

> MakeAllFormulae([FCx] ,F[x]] ,-2!);

which will produce the following output

Hellmann — Feynman via, Fx

and this is nothing else than the result (4.26). The next code calculates all

required formulas of QMC polarizabilities estimators up to the sixth degree

> MakeAllFormulae([F[x] ,F[x] ,F[x] ,F[x]] , -4!);

> MakeAllFormulae([F[x] ,F[x] ,F[y] .F[y]], -4!/6);

> MakeAllFormulae([F[xx] ,F[x] ,F[x]], -2!*3);

> MakeAllFormulae([F[xx] ,F[y] ,F[y]] , -2!*3);

> MakeAllFormulae([F[xz] ,F[x] ,F[z3] , -2!*3/4);

> MakeAllFormulae([F[xx] ,F[xx]] ,-2!*3*2);

> MakeAllFormulae([F[zz] ,F[xx]] ,-2!*3'2/2);

> MakeAllFormulae([F[xz] ,F[xz]] ,-2!*3*2/4); "^^

> MakeAllFormulae([F[x] ,F[x],F[x],F[x],FCx] ,F[x]] , -6!);
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> MakeAllFormulae([F[x],F[x],F[z],F[z].F[z],F[z]], -6!/15);

> MakeAllFormulae([F[x].F[x],F[y],F[y].F[z],F[z]], -61/90);

> MakeAllFormulae([F[xx],F[x],F[x],F[x],F[x3],-4!*3);

> MakeAllFormulae([F[xx],F[y],F[y],F[y],F[y]].-4!*3);

> MakeAllFormulae ( [F [xx] , F [x] . F [x] , F [y] , F [y] ] ,
-4 ! *3/6)

;

> MakeAllFormulae([F[xz],F[x] ,F[z].F[z],F[z]],-4!*3/8);

> MakeAllFormulae([F[xz] ,F[x] .F[z] ,F[y] ,F[y]] ,-4!*3/24) ;

> MakeAllFormulae([F[xx] ,FCy] .F[y] ,F[z] ,F[z]] ,-4! 3/6) ;

> MakeAllFormulae([F[xx] ,F[xx] ,F[x] ,F[x]] ,-2!*2!*3"2)
;

> MakeAllFormulae([F[xx] ,FCxx] ,F[y] ,F[y]] ,-2! *2! *3-2)
;

> MakeAllFormulae ([F[xz],F[yz] ,F[x] ,F[y]] ,-2! *2! +3-2/16)
;

> MakeAllFormulae([F[xz] ,F[zz] ,F[x] ,F[z]] ,-2! *2! *3-2/8)

> MakeAllFormulae([F[xz] ,F[yy] ,F[x] ,F[z]3 ,-2!*2!*3-2/8)

> MakeAllFormulae([F[xx] ,FCyy] .F[z] ,F[z]] ,-2! *2! *3-2/2)

> MakeAllFormulae([F[xx] ,F[yy] ,F[y] ,F[y]] ,-2! *2! *3"2/2)

> MakeAllFormulae([F[xz] ,F[xz] .F[y] ,F[y]] ,-2! *2! *3-2/4)

> MakeAllFormulae([F[xz] ,F[xz] ,F[z] ,F[z]] ,-2! +2! *3-2/4)

> MakeAllFormulae([F[xx] ,F[xx] ,FCxx]] ,-3!*3-3);

> MakeAllFormulae([F[xx] ,FCyy] ,F[yy]] ,-3!*3-3/3);

> MakeAllFormulae([F[xz] ,F[xz] ,F[xx]] ,-3! 3-3/12)
;

> MakeAllFormulae([F[xy] ,F[yz] ,F[xz]] ,-3! 3*3/48)

;

> MakeAllFormulae([F[xx] ,F[yy] ,F[zz3] ,-3! 3-3/6)
;

> MakeAllFormulae([F[xy] ,F[xy] ,F[zz]] ,-3! ^3-3/12)
;

> MakeAllFormulae([F[xxx] ,F[x] ,F[x] ,F[x]] ,-3!+15) ;

> MakeAllFormulae([F[xxy] ,F[y] ,F[y] ,F[y]] ,-3! 15/3)

> MakeAllFormulae([F[xxy] ,F[x] ,F[x] ,FCy]] ,-3!^15/9)

> MakeAllFormulae([F[xxx] .F[x] ,F[y] ,F[y]] ,-3! 15/3)

> MakeAllFormulae([F[xxy] ,F[y] ,F[z] ,F[z]] ,-3! 15/9)
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> MakeAllForinulae([F[xy2],F[x],F[y],F[z]],-3!*15/36);

> MakeAllFormulae([F[xxx] ,F[xx] ,F[x]] ,-45);

> MakeAllFormulae([F[xxx] ,F[yy] ,F[x]] ,-45) ;

> MakeAllFormulae([FCxxx] ,F[xy] ,F[y]] ,-45/2) ;

> MakeAllFormulae([F[xxy] ,F[xx] ,F[y]] ,-45/3);

> MakeAllFormulae([F[xxy] ,F[xy] ,F[x]] ,-45/6) ;

> MakeAllFormulaeCCFCxxy] ,F[zz] ,F[y]] ,-45/3);

> MakeAllFormulae([F[xyz] ,F[xy] ,F[z]] ,-45/12);

> MakeAllFormulaeCCFCxxy] ,FCyz] ,FCz]] ,-45/6) ;

> MakeAllFormulae ( CF Cxxy] , F Cyy] .F Cy] ] , -45/3) ;

> MakeAllFormulaeCCFCxxx] .FCxxx]] ,-2!*15~2);
. i,v-, ^^

> MakeAllFormulae (CFCxyz] ,FCxyz]] ,-2! *15-2/36)

;

> MakeAllFormulae ( CF Cxxy] ,F[zzy]], -2 1*15-2/18);

> MakeAllFormulae (CFCyyy] ,FCxxy]] , -21*15-2/6)
;

> MakeAllFormulaeCCFCxxy] ,FCxxy]] , -21*15-2/9)
;

If we want, we can use this worksheet to calculate polarizabilities estima-

tors of any degree, for example the eight order A'J_j^j_,_j_j_2_j atomic polarizability

estimator would be obtained by

> MakeAllFormulae C CF Cz] , F Cz] , F Cz] , F Cz] , F Cz] , F Cz] , F Cz] , F Cz] ] ,
-8

! ) ;
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